### 實用資源整理 :bread: --- #### [學習資源] [資料集來源] [技術更新] #### [Paper With Code](https://paperswithcode.com/) --- #### [實用工具] #### [Git](https://git-scm.com/) #### [Github](https://github.com/) --- #### [實用工具] #### Python Notebook - Colab & Jupyter Notebook #### [Colab](https://colab.research.google.com/notebooks/intro.ipynb) #### [Jupyter Notebook](https://jupyter.org/) --- #### [資料集來源(?)] [學習資源] [應用實戰] #### [Kaggle Datasets](https://www.kaggle.com/datasets) #### [Kaggle Courses](https://www.kaggle.com/learn) #### [Kaggle Competitions](https://www.kaggle.com/competitions) --- #### [學習資源] #### [Hung-yi Lee](https://www.youtube.com/channel/UC2ggjtuuWvxrHHHiaDH1dlQ) {%youtube c9TwBeWAj_U %} --- #### [學習資源] [靈感來源(?)] #### [Medium](https://medium.com/) --- #### [資料集來源] #### [政府資料開放平台](https://data.gov.tw/) --- #### [應用範例-視覺化工具] #### [Plotly](https://plotly.com/python/) --- #### [學習資源] #### [Coursera](https://zh-tw.coursera.org/courses?query=free) --- #### [學習資源] #### [資料科學・機器・人](https://brohrer.mcknote.com/zh-Hant/) --- #### [學習資源] Data Science or Machine Learning? ###### 聽聽大神怎麼說↓ *(06:17-10:54)* :leaves: [Lee Meng's Blog](https://leemeng.tw/) {%youtube sCkn1PQciws%} ---