Lien de la note Hackmd
On a un probleme de classification binaire:
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
Probleme: donnees d'apprentissage
On cherche un hyperplan de qui separe parfaitement les deux classes
Dans notre exemple, il n'y a pas qu'un seul hyperplan separant les 2 classes:
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
Hyperplan
Hyperplan: caracterise par un vecteur normal et un offset
Lequel des hyperplans semble meilleur ?
Celui du milieu
On a une infinite de solutions possibles (meme risque empirique), mais toutes les solutions n'ont pas les memes performances en generalisation
Geometriquement, on veut celui qui est le plus loin des points (aka la marge de l'hyperplan)
On cherche tel que tous les echantillons de la classe soient dans le demi espace:
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
Marge
Marge: distance de l'hyperplan aux echantillons les plus proches
On va chercher l'hyperplan qui maximise la marge
Distance d'un point a un hyperplan:
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
On cherche
Si est une solution, est aussi solution.
On va choisir tels que
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
Marge normalisee:
SVM
On cherche a:
Le Lagrangien de (SVM) est:
Conditions KKT
Stationnarite du Lagrangien
A chaque correspond un
- est la "force" avec laquelle repousse l'hyperplan
- l'hyperplan est a l'equilibre
Complementarite
Soit :
Soit :
Recap
Sous reserve qu'on puisse resoudre le dual:
- On trouve
- On trouve
- On trouve grace aux vecteurs de support
Probleme dual du SVM se resout par Sequential Minimal Optimization
Pour resoudre