\# ADR-001: Adopt Redis for Caching Layer
\*\*Status:\*\* Accepted\\
\*\*Date:\*\* 2025-08-17\\
\*\*Author:\*\* John Doe\\
\*\*Reviewers:\*\* Backend Team
\------------------------------------------------------------------------
\## Context
Our web application frequently queries the database for user session
data and configuration settings.\\
This has led to \*\*performance bottlenecks\*\* under high traffic. We need
a caching solution that:\\
\- Reduces database load\\
\- Provides sub-millisecond reads\\
\- Supports distributed deployment for future scaling
\------------------------------------------------------------------------
\## Considered Options
1\. \*\*Rely only on PostgreSQL\*\*
- Pros: Simple, no new infrastructure\\
- Cons: High latency under load, risk of DB saturation
2\. \*\*Use Memcached\*\*
- Pros: Very fast, simple key-value store\\
- Cons: Limited feature set, no persistence, weaker ecosystem
3\. \*\*Use Redis (chosen)\*\*
- Pros: Fast, supports persistence, pub/sub, wide adoption, rich
ecosystem\\
- Cons: Slightly more complex setup and maintenance
\------------------------------------------------------------------------
\## Decision
We decided to \*\*adopt Redis as the primary caching layer\*\* because it
balances performance, reliability, and ecosystem maturity.\\
Redis will be used for:\\
\- Session storage\\
\- Frequently accessed configuration values\\
\- Future use cases (rate limiting, queues)
\------------------------------------------------------------------------
\## Consequences
\- \*\*Positive:\*\* Reduced DB load, faster response times, scalability
for traffic spikes\\
\- \*\*Negative:\*\* Adds infrastructure dependency (Redis cluster must be
monitored and maintained)\\
\- \*\*Mitigations:\*\* High-availability Redis setup with monitoring and
alerting
\------------------------------------------------------------------------
\## Implementation Roadmap
1\. Deploy Redis cluster in staging environment\\
2\. Update application code to read/write session data to Redis\\
3\. Configure monitoring and failover strategies\\
4\. Roll out changes to production
\------------------------------------------------------------------------
\## Success Metrics
\- Average response time reduced by 30%\\
\- Database CPU utilization \\< 60% under peak load\\
\- 99.9% cache hit rate for session data
\------------------------------------------------------------------------
\## Future Considerations
Evaluate Redis Streams for event-driven features.\\
Consider managed Redis services (e.g., AWS ElastiCache) if operational
overhead grows.