---
link: https://leetcode.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/
tags: array, tree, bt
---
# 106. Construct Binary Tree from Inorder and Postorder Traversal
## Question
Given inorder and postorder traversal of a tree, construct the binary tree.
**Note:**
You may assume that duplicates do not exist in the tree.
For example, given
```
inorder = [9,3,15,20,7]
postorder = [9,15,7,20,3]
```
Return the following binary tree:
```
3
/ \
9 20
/ \
15 7
```
## Solution: Python
```python=
"""
O(n^2) runtime
"""
class Solution(object):
def buildTree(self, inorder, postorder):
"""
:type inorder: List[int]
:type postorder: List[int]
:rtype: TreeNode
"""
if not inorder:
return None
root = inorder.index(postorder.pop())
node = TreeNode(inorder[root])
node.right= self.buildTree(inorder[root + 1:], postorder)
node.left = self.buildTree(inorder[:root], postorder)
return node
def buildTreeInitialSolution(self, preorder, inorder):
"""
:type preorder: List[int]
:type inorder: List[int]
:rtype: TreeNode
"""
if not preorder or not inorder:
return None
root = preorder[0]
root_index = inorder.index(root)
left_subtree_inorder = inorder[:root_index]
right_subtree_inorder = inorder[root_index + 1:]
right_subtree_index = self.findIndexOfRightSubtreeInPreorder(preorder, root, left_subtree_inorder)
left_subtree_preorder = preorder[1:right_subtree_index]
right_subtree_preorder = preorder[right_subtree_index:]
node = TreeNode(root)
node.left = self.buildTree(left_subtree_preorder, left_subtree_inorder)
node.right = self.buildTree(right_subtree_preorder, right_subtree_inorder)
return node
def findIndexOfRightSubtreeInPreorder(self, preorder, root, left_subtree):
left_subtree = set(left_subtree)
index = None
for index, el in enumerate(preorder):
if not (el == root or el in left_subtree):
return index
return index + 1
```
## Solution: Java
```java=
```