# 1.1.6 Inverse matrix A matrix is said to be invertible if $AA^{-1} = I = A^{-1}A$ where A is a square matrix The inverse of the product of two invertible matrices is equal to the product of the matrix inverses $$ (AB)^{-1} = A^{-1}B^{-1} $$ The inverse of a transpose matrix is equal to the transpose of an inverse matrix $$ (A^T)^{-1} = (A^{-1})^T $$ The following is a derivation of the equation to invert a matrix $$ A = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix} \\ A^{-1} = \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \\ \end{bmatrix} $$ We know that $$ A A^{-1} = I \\ \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} $$ Therefore $$ a x_1 + by_1 = 1 \\ a x_2 + by_2 = 0 \\ c x_1 + dy_1 = 0 \\ c x_2 + dy_2 = 1 $$ Rearranging the two middle equations gives $$ y_1=\dfrac{-c}{d} x_1 \\ y_2=\dfrac{-a}{b} x_2 $$ Substituting into the top equation $$ a x_1 + b \dfrac{-c}{d} x_1 = 1 \\ x_1\left(a + \dfrac{-bc}{d}\right) = 1 \\ x_1 = \dfrac{1}{\left(a + \dfrac{-bc}{d}\right)} \\ x_1 = \dfrac{d}{ad-bc} \\ y_1 = \dfrac{-c}{d}\dfrac{d}{ad-bc} \\ y_1 = \dfrac{-c}{ad-bc} $$ And then the bottom equation $$ c x_2 + d \dfrac{-a}{b} x_2 = 1 \\ x_2\left(c + \dfrac{-ad}{b}\right) = 1 \\ x_2 = \dfrac{1}{\left(c + \dfrac{-ad}{b}\right)} \\ x_2 = \dfrac{-b}{ad-bc} \\ y_2 = \dfrac{-a}{b}\dfrac{-b}{ad-bc} \\ y_2 = \dfrac{a}{ad-bc} $$ Therefore $$ A^{-1} = \dfrac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} $$ Where $\dfrac{1}{ad-bc}$ is the matrix *determinant*