<style> .markdown-body b { font-weight: 700; } .markdown-body code, code, pre { max-height:80% !important; font-size: 14px; line-height: 115%; color: #99999 !important; background-color: #ffe9e5; } .reveal { font-size: 20px; } </style> # 循環賽 <!-- Put the link to this slide here so people can follow --> <!-- slide: https://hackmd.io/p/template-Talk-slide --> --- ## 題目 下圖為五位選手的比賽結果 a->b表示 a 獲勝 ```graphviz digraph google{ // layout=neato; layout=circo; // layout=twopi; fontname="Helvetica,Arial,sans-serif" fontcolor=white bgcolor="transparent" // bgcolor="black" node[shape=circle,style=filled,color=white,colorscheme=ylgnbu7] edge[color=white] // label="real world" 1->2 1->4 2->3 2->4 3->1 4->3 4->5 5->3 5->2 5->1 } ``` --- ## 矩陣 ```graphviz digraph google{ // layout=neato; layout=circo; // layout=twopi; fontname="Helvetica,Arial,sans-serif" fontcolor=white bgcolor="transparent" // bgcolor="black" node[shape=circle,style=filled,color=white,colorscheme=ylgnbu7] edge[color=white] // label="real world" 1->2 2->4[color=red] 2->3 3->4 4->5 5->1 1->3[color=red] 3->5[color=red] 5->2[color=red] 4->1[color=red] } ``` $$A=\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ \end{bmatrix} $$ --- # $s^{(i)}$ $s^{(i)}=As^{(i-1)}$ $$s^{(1)}=\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1\\ \end{bmatrix}= \begin{bmatrix} 2\\ 2\\ 1\\ 2\\ 3\\ \end{bmatrix} \\ s^{(2)}=\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 2\\ 2\\ 1\\ 2\\ 3\\ \end{bmatrix}= 2\begin{bmatrix} 0\\ 0\\ 1\\ 0\\ 1\\ \end{bmatrix} +2\begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 1\\ \end{bmatrix} +1\begin{bmatrix} 0\\ 1\\ 0\\ 1\\ 1\\ \end{bmatrix} +2\begin{bmatrix} 1\\ 1\\ 0\\ 0\\ 0\\ \end{bmatrix} +3\begin{bmatrix} 0\\ 0\\ 0\\ 1\\ 0\\ \end{bmatrix}=\begin{bmatrix} 4\\ 3\\ 2\\ 4\\ 5\\ \end{bmatrix} $$ --- ## 循環 ```graphviz digraph google{ // layout=neato; layout=circo; // layout=twopi; fontname="Helvetica,Arial,sans-serif" fontcolor=white bgcolor="transparent" // bgcolor="black" node[shape=circle,style=filled,color=white,colorscheme=ylgnbu7] edge[color=white] // label="real world" 1->2 2->4[color=red] 2->3 3->4 4->5 5->1 1->3[color=red] 3->5[color=red] 5->2[color=red] 4->1[color=red] } ``` $$ A=\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ \end{bmatrix} $$ --- ## 循環 $$ s^{(1)}=\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1\\ \end{bmatrix}= \begin{bmatrix} 2\\ 2\\ 2\\ 2\\ 2\\ \end{bmatrix}\\ s^{(2)}=\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 2\\ 2\\ 2\\ 2\\ 2\\ \end{bmatrix}= \begin{bmatrix} 4\\ 4\\ 4\\ 4\\ 4\\ \end{bmatrix} $$ $$As=\lambda s$$ ## $s^{(i)},i=?$ ```graphviz digraph google{ // layout=neato; layout=circo; // layout=twopi; fontname="Helvetica,Arial,sans-serif" fontcolor=white bgcolor="transparent" //bgcolor="black" node[shape=circle,style=filled,color=white,colorscheme=ylgnbu7] edge[color=white] // label="real world" 1->2 2->3[color=green] 3->4 4->5 5->6[color=green,dir=back] 6->1 1->3[color=red] 3->5[color=red] 5->1[color=red] 2->4[color=red] 4->6[color=red] 6->2[color=red] 1->4[color=green] 5->2 3->6 } ``` $$A=\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 & 1\\ 1 & 0 & 0 & 0 & 0 & \color{red} 0\\ 1 & 1 & 0 & 0 & \color{red}1 & 0\\ \end{bmatrix} $$ $$ s^{(1)}= \begin{bmatrix} 2\\ 2\\ 2\\ 2\\ 1\\ 3\\ \end{bmatrix}, s^{(2)}= \begin{bmatrix} 4\\ 4\\ 3\\ 4\\ 2\\ 5\\ \end{bmatrix}, s^{(3)}= \begin{bmatrix} 7\\ 7\\ 6\\ 7\\ 4\\ 10\\ \end{bmatrix}, s^{(4)}= \begin{bmatrix} 13\\ 13\\ 11\\ 14\\ 7\\ 18\\ \end{bmatrix}, s^{(5)}= \begin{bmatrix} 24\\ 25\\ 21\\ 25\\ 13\\ 33\\ \end{bmatrix}, s^{(6)}= \begin{bmatrix} 46\\ 46\\ 38\\ 46\\ 24\\ 62\\ \end{bmatrix}, s^{(7)}= \begin{bmatrix} 84\\ 84\\ 70\\ 86\\ 46\\ 116\\ \end{bmatrix}, $$
{"metaMigratedAt":"2023-06-18T04:16:22.547Z","metaMigratedFrom":"YAML","title":"循環賽","breaks":true,"description":"View the slide with \"Slide Mode\".","contributors":"[{\"id\":null,\"add\":465,\"del\":54},{\"id\":\"88becfca-8111-457c-985b-2a052473a787\",\"add\":5977,\"del\":3894},{\"id\":\"b95999dd-326f-4f6a-938c-61b2fdeac18b\",\"add\":8,\"del\":8}]"}
    296 views
   Owned this note