<style>
.markdown-body b {
font-weight: 700;
}
.markdown-body code,
code,
pre
{
max-height:80% !important;
font-size: 14px;
line-height: 115%;
color: #99999 !important;
background-color: #ffe9e5;
}
.reveal {
font-size: 20px;
}
</style>
# 循環賽
<!-- Put the link to this slide here so people can follow -->
<!-- slide: https://hackmd.io/p/template-Talk-slide -->
---
## 題目
下圖為五位選手的比賽結果
a->b表示 a 獲勝
```graphviz
digraph google{
// layout=neato;
layout=circo;
// layout=twopi;
fontname="Helvetica,Arial,sans-serif"
fontcolor=white
bgcolor="transparent"
// bgcolor="black"
node[shape=circle,style=filled,color=white,colorscheme=ylgnbu7]
edge[color=white]
// label="real world"
1->2
1->4
2->3
2->4
3->1
4->3
4->5
5->3
5->2
5->1
}
```
---
## 矩陣
```graphviz
digraph google{
// layout=neato;
layout=circo;
// layout=twopi;
fontname="Helvetica,Arial,sans-serif"
fontcolor=white
bgcolor="transparent"
// bgcolor="black"
node[shape=circle,style=filled,color=white,colorscheme=ylgnbu7]
edge[color=white]
// label="real world"
1->2
2->4[color=red]
2->3
3->4
4->5
5->1
1->3[color=red]
3->5[color=red]
5->2[color=red]
4->1[color=red]
}
```
$$A=\begin{bmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
\end{bmatrix}
$$
---
# $s^{(i)}$
$s^{(i)}=As^{(i-1)}$
$$s^{(1)}=\begin{bmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
1\\
1\\
1\\
1\\
1\\
\end{bmatrix}=
\begin{bmatrix}
2\\
2\\
1\\
2\\
3\\
\end{bmatrix}
\\
s^{(2)}=\begin{bmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
2\\
2\\
1\\
2\\
3\\
\end{bmatrix}=
2\begin{bmatrix}
0\\
0\\
1\\
0\\
1\\
\end{bmatrix}
+2\begin{bmatrix}
1\\
0\\
0\\
0\\
1\\
\end{bmatrix}
+1\begin{bmatrix}
0\\
1\\
0\\
1\\
1\\
\end{bmatrix}
+2\begin{bmatrix}
1\\
1\\
0\\
0\\
0\\
\end{bmatrix}
+3\begin{bmatrix}
0\\
0\\
0\\
1\\
0\\
\end{bmatrix}=\begin{bmatrix}
4\\
3\\
2\\
4\\
5\\
\end{bmatrix}
$$
---
## 循環
```graphviz
digraph google{
// layout=neato;
layout=circo;
// layout=twopi;
fontname="Helvetica,Arial,sans-serif"
fontcolor=white
bgcolor="transparent"
// bgcolor="black"
node[shape=circle,style=filled,color=white,colorscheme=ylgnbu7]
edge[color=white]
// label="real world"
1->2
2->4[color=red]
2->3
3->4
4->5
5->1
1->3[color=red]
3->5[color=red]
5->2[color=red]
4->1[color=red]
}
```
$$
A=\begin{bmatrix}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
$$
---
## 循環
$$
s^{(1)}=\begin{bmatrix}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
1\\
1\\
1\\
1\\
1\\
\end{bmatrix}=
\begin{bmatrix}
2\\
2\\
2\\
2\\
2\\
\end{bmatrix}\\
s^{(2)}=\begin{bmatrix}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
2\\
2\\
2\\
2\\
2\\
\end{bmatrix}=
\begin{bmatrix}
4\\
4\\
4\\
4\\
4\\
\end{bmatrix}
$$
$$As=\lambda s$$
## $s^{(i)},i=?$
```graphviz
digraph google{
// layout=neato;
layout=circo;
// layout=twopi;
fontname="Helvetica,Arial,sans-serif"
fontcolor=white
bgcolor="transparent"
//bgcolor="black"
node[shape=circle,style=filled,color=white,colorscheme=ylgnbu7]
edge[color=white]
// label="real world"
1->2
2->3[color=green]
3->4
4->5
5->6[color=green,dir=back]
6->1
1->3[color=red]
3->5[color=red]
5->1[color=red]
2->4[color=red]
4->6[color=red]
6->2[color=red]
1->4[color=green]
5->2
3->6
}
```
$$A=\begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0\\
0 & 0 & 1 & 1 & 0 & 0\\
0 & 0 & 0 & 1 & 1 & 0\\
0 & 0 & 0 & 0 & 1 & 1\\
1 & 0 & 0 & 0 & 0 & \color{red} 0\\
1 & 1 & 0 & 0 & \color{red}1 & 0\\
\end{bmatrix}
$$
$$
s^{(1)}=
\begin{bmatrix}
2\\
2\\
2\\
2\\
1\\
3\\
\end{bmatrix},
s^{(2)}=
\begin{bmatrix}
4\\
4\\
3\\
4\\
2\\
5\\
\end{bmatrix},
s^{(3)}=
\begin{bmatrix}
7\\
7\\
6\\
7\\
4\\
10\\
\end{bmatrix},
s^{(4)}=
\begin{bmatrix}
13\\
13\\
11\\
14\\
7\\
18\\
\end{bmatrix},
s^{(5)}=
\begin{bmatrix}
24\\
25\\
21\\
25\\
13\\
33\\
\end{bmatrix},
s^{(6)}=
\begin{bmatrix}
46\\
46\\
38\\
46\\
24\\
62\\
\end{bmatrix},
s^{(7)}=
\begin{bmatrix}
84\\
84\\
70\\
86\\
46\\
116\\
\end{bmatrix},
$$
{"metaMigratedAt":"2023-06-18T04:16:22.547Z","metaMigratedFrom":"YAML","title":"循環賽","breaks":true,"description":"View the slide with \"Slide Mode\".","contributors":"[{\"id\":null,\"add\":465,\"del\":54},{\"id\":\"88becfca-8111-457c-985b-2a052473a787\",\"add\":5977,\"del\":3894},{\"id\":\"b95999dd-326f-4f6a-938c-61b2fdeac18b\",\"add\":8,\"del\":8}]"}