###### tags: `MLCC` # Feature Crosses ### [colab 執行範例](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/representation_with_a_feature_cross.ipynb?utm_source=mlcc&utm_campaign=colab-external&utm_medium=referral&utm_content=representation_tf2-colab&hl=zh-tw#scrollTo=D-IXYVfvM4gD) ## Encoding Nonlinearity :::info 當數據的分群無法用線性表示時,nonlinear 就可以派上用場。 - :::spoiler (圖一) 可用 linear 表示 ![](https://i.imgur.com/BTxsQTy.png) ::: - :::spoiler (圖二) 不可用 linear 表示 ![](https://i.imgur.com/JFTt4OU.png) ::: ::: - 建立 feature cross 叫做 X3 ![](https://i.imgur.com/3xDYoAt.png) - 線性規化公式變成 <- 這算是非線性規化公式嗎?? ![](https://i.imgur.com/7YHtkDn.png) - feature crosses 種類 - [A X B] 2個特徵的值相乘 - [A x B x C x D x E] 5個特徵的值相乘 - .... - [A x A] 2個依樣的特徵相乘 - 透過 **stochastic gradient descent 隨機梯度下降**,讓大量的數據能夠有效率的訓練 model ## Crossing One-Hot Vectors - 組合有種AND運算的感覺 (我不太懂) - example ```python= height = [ [150, 160), [160, 170), [170, 180) ] gender = ["male", "female"] height_x_gneder = [ [150, 160) AND "male", [160, 170) AND "male", [170, 180) AND "male", [150, 160) AND "female", [160, 170) AND "female", [170, 180) AND "female" ] ```