# Introduction to Machine Learning ###### tags: `MLCC` ## 通過這個課程可以學到3件事 1. 縮短編程時間 - 有許多現成的工具,你只需要提供一些資料樣本就可以開發程式 3. 客製化自己的產品/程式 - 當已經有一個機器學習模型,就可以套用到其他n個程式,改變依你的需求與資料而定 3. 解決不知如何用人工解決的問題 - 對於太複雜的問題,只要向機器提供大量樣本,機器就會自己找出解決方案 4. 改變思考方式 - 我們可以用機器學習,透過實驗和統計,觀察這個充滿不確定性的未知世界,而不是以邏輯線性地推導理論 ## 常用術語 | 名詞 | 解釋 | | -------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Instance | The thing about which you want to make a prediction | | **Label** | An answer for a prediction task, or which is produced by a ML system, or the right answer in training data | | **Feature** | A property of an instance used in a prediction task | | Feature Column | A set of related features | | Example | An instance (with its features) and a label | | Model | A statistical representation of a prediction task | | **Metric** | A number that you care about | | Objective | A metric that your algorithm is trying to optimize | | Pipeline | The infrastructure surrounding a machine learning algorithm.(Includes gathering the data and training the models) | ## [Rules of Machine Learning](https://developers.google.com/machine-learning/guides/rules-of-ml#rule_1_dont_be_afraid_to_launch_a_product_without_machine_learning) ## 學習機器學習的前置準備(?) 1. 確保Pipeline是可靠、穩定的 2. 從「合理的目標」開始做 3. 找 common sense feature > common sense 指的是「大家都知道的道理/常理」,通常是依據**直覺或人情事理**的判斷