# EPS Homework ## 1. Dependability: ### a.) S1, S2 -> Sensors P1 -> Processor ![](https://i.imgur.com/ehrcMu8.png) R<sub>S1</sub> = 0.89 R<sub>S2</sub> = 0.95 R<sub>P1</sub> = 0.85 R<sub>SYS</sub> = (1-(1-R<sub>S1</sub>)&times;(1-R<sub>S2</sub>)) &times; R<sub>P1</sub> R<sub>SYS</sub> = (1-(1-0.89)&times;(1-0.95)) &times; 0.85 R<sub>SYS</sub> = (1-(0.11)&times;(0.05)) &times; 0.85 R<sub>SYS</sub> = (1-0.0055) &times; 0.85 R<sub>SYS</sub> = 0.9945 &times; 0.85 <u>R<sub>SYS</sub> = 0.845325</u> ### b.) S1, S2 -> Sensors Pnew1, Pnew2 -> Processor ![](https://i.imgur.com/7ImnXyt.png) R<sub>S1</sub> = 0.89 R<sub>S2</sub> = 0.95 R<sub>Pnew1</sub> = 0.80 R<sub>Pnew2</sub> = 0.80 R<sub>P_Parallel</sub> = 1 - (1-R<sub>Pnew1</sub>)&times;(1-R<sub>Pnew2</sub>) R<sub>P_Parallel</sub> = 1 - (1-0.8)&times;(1-0.8) R<sub>P_Parallel</sub> = 1 - (0.2)&times;(0.2) R<sub>P_Parallel</sub> = 1 - 0.04 R<sub>P_Parallel</sub> = <u>0.96</u> R<sub>SYS</sub> = (1-(1-R<sub>S1</sub>)&times;(1-R<sub>S2</sub>)) &times; R<sub>P_Parallel</sub> R<sub>SYS</sub> = (1-(1-0.89)&times;(1-0.95)) &times; 0.96 R<sub>SYS</sub> = (1-(0.11)&times;(0.05)) &times; 0.96 R<sub>SYS</sub> = (1-0.0055) &times; 0.96 R<sub>SYS</sub> = 0.9945 &times; 0.96 <u>R<sub>SYS</sub> = 0.95472</u> The setup from b.) is more reliable. ### c.) S1, S2 -> Sensors P1 -> Processor &lambda;<sub>S1</sub> = 0.5 &times; 10<sup>-5</sup> &lambda;<sub>S2</sub> = 0.8 &times; 10<sup>-5</sup> &lambda;<sub>P1</sub> = 0.3 &times; 10<sup>-5</sup> &lambda;<sub>sys</sub> = &lambda;<sub>S1</sub> + &lambda;<sub>S2</sub> + &lambda;<sub>P1</sub> &lambda;<sub>sys</sub> = 0.5 &times; 10<sup>-5</sup> + 0.8 &times; 10<sup>-5</sup> + 0.3 &times; 10<sup>-5</sup> &lambda;<sub>sys</sub> = (0.5 + 0.8 + 0.3) &times; 10<sup>-5</sup> <u>&lambda;<sub>sys</sub> = 1.6 &times; 10<sup>-5</sup></u> MTTF = 1/&lambda; MTTF = 1 / (1.6 &times; 10<sup>-5</sup>) MTTF = 1 / (1.6 &times; 10<sup>-5</sup>) MTTF = 10<sup>5</sup> / 1.6 <u>MTTF = 6.25 &times; 10<sup>4</sup></u> t = 1 year = 365 &times; 24h = 8760h R<sub>sys</sub>(1 year) = e<sup>-&lambda;<sub>sys</sub>t</sup> R<sub>sys</sub>(1 year) = e<sup>-1.6 &times; 10<sup>-5</sup>&times;8760</sup> R<sub>sys</sub>(1 year) = e<sup>−14016 &times; 10<sup>-5</sup></sup> R<sub>sys</sub>(1 year) = e<sup>−0.14016</sup> <u>R<sub>sys</sub>(1 year) = 0.869219149 = 86.9219149%</u>