## Schur's recursive triangulation procedure Given a linear endomorphism `f` on a non-trivial finite-dimensional vector space `E` over an algebraically closed field `𝕜`, one can always pick an eigenvalue `μ` of `f` whose corresponding eigenspace `V` is non-trivial. Given that `E` is also an inner product space, let `bV` and `bW` be othonormal bases for `V` and `Vᗮ` respectively. Then, the collection of vectors in `bV` and `bW` forms an othornomal basis `bE` for `E`, as the direct sum of `V` and `Vᗮ` is an internal decomposition of `E`. The matrix representation of `f` with respect to `bE` satisfies $$ \sideset{_\mathrm{bE}}{_\mathrm{bE}}{[f]} = \begin{bmatrix} \sideset{_\mathrm{bV}}{_\mathrm{bV}}{[f]} & \sideset{_\mathrm{bW}}{_\mathrm{bV}}{[f]} \\ \sideset{_\mathrm{bV}}{_\mathrm{bW}}{[f]} & \sideset{_\mathrm{bW}}{_\mathrm{bW}}{[f]} \end{bmatrix} = \begin{bmatrix} \mu I & □ \\ 0 & \sideset{_\mathrm{bW}}{_\mathrm{bW}}{[f]} \end{bmatrix}, $$ which is upper triangular as long as $\sideset{_\mathrm{bW}}{_\mathrm{bW}}{[f]}$ is. Finally, one observes that the recursion from $\sideset{_\mathrm{bE}}{_\mathrm{bE}}{[f]}$ to $\sideset{_\mathrm{bW}}{_\mathrm{bW}}{[f]}$ is well-founded, as the dimension of `bW` is smaller than that of `bE` because `bV` is non-trivial. However, in order to leverage `DirectSum.IsInternal.collectedOrthonormalBasis`, the type `Σ b, cond b (Fin m) (Fin n)` has to be used instead of the more natural `Fin m ⊕ Fin n` while their equivalence is propositionally established by `Equiv.sumEquivSigmalCond`. ## Showing `Lorentz.SL2C.toSelfAdjointMap` has determinant 1 Since `Lorentz.ℍ₂` as a real vector space has the 4 Pauli matrices as basis, we know that its vector representation consists of 4 real components. This makes the matrix representation of `toSelfAdjointMap M` a 4-by-4 real matrix `F`. To make the computation of `F.det` manageable, the following basis is used instead of the Pauli matrices to induce as many zeros as possible in `F`: $$ E_0 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_1 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, E_2 = \sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, E_3 = -\sigma_2 = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}, $$ Suppose that $M = \begin{bmatrix} x & □ \\ 0 & y \end{bmatrix}$ is upper triangular, the basis $\{E_k\}_{k=0}^3$ induces the matrix representation $$ F = \begin{bmatrix} \lvert x\rvert^2 & □ & □ & □ \\ 0 & \lvert y\rvert^2 & 0 & 0 \\ 0 & □ & \operatorname{Re}(x\bar{y}) & -\operatorname{Im}(x\bar{y}) \\ 0 & □ & \operatorname{Im}(x\bar{y}) & \operatorname{Re}(x\bar{y}) \\ \end{bmatrix}. $$ If $xy = 1$, the Schur complement formula `Matrix.det_fromBlocks₂₂` yields $$\begin{align} \det F &= \begin{vmatrix} \operatorname{Re}(x\bar{y}) & -\operatorname{Im}(x\bar{y}) \\ \operatorname{Im}(x\bar{y}) & \operatorname{Re}(x\bar{y}) \end{vmatrix} \det\left( \begin{bmatrix} \lvert x\rvert^2 & □ \\ 0 & \lvert y\rvert^2 \end{bmatrix} - \begin{bmatrix} □ & □ \\ 0 & 0 \end{bmatrix} \begin{bmatrix} □ & □ \\ □ & □ \end{bmatrix} \begin{bmatrix} 0 & □ \\ 0 & □ \end{bmatrix} \right) \\ &= \lvert x\bar{y}\rvert^2 \lvert x\rvert^2 \lvert y\rvert^2 = \lvert xy\rvert^4 = 1. \end{align}$$ This concludes `Lorentz.SL2C.toSelfAdjointMap_det_one'`. To get `Lorentz.SL2C.toSelfAdjointMap_det_one`, triangulate the special linear matrix using `Matrix.schur_triangulation`, and observe that `Matrix.schurTriangulation` preserves the determinant which is 1.