# Entropy and Irreversibility in the Quantum Realm ## Model The author accompanies the symbolic discussions of the topic with vivid simulations depicting the physical effects of interest. The simulations all concern a system of $8$ electrons in which only their spins are taken into account, and the simulations are performed according to the scheme below. I precede the illustration of the scheme with the rationale for adopting such a setting. ### Rationale 1. An electron only concerned of its spin is a two-level system which is the simplest to describe. 2. A composite system of $8$ such two-level subsystems has $2^8 = 256$ eigenstates which serves narrative purposes well while keeping computations manageable. 3. Though any composite system of two-level subsystems would suffice, the author favors a system of electrons for concreteness. ### Scheme Let $n = 8$, $N = 2^n = 256$, and denote the up-spin and down-spin of the $j^{\text{ th}}$ electron by $\left|1\right>_j$ and $\left|0\right>_j$ respectively where $j = 0,\dots,n-1$. Let $\{\left|k\right>\}_{k=0}^{N-1}$ be the ordered basis for the composite system such that $\displaystyle \left|k\right> = \bigotimes_{j=0}^{n-1}\left|k_j\right>_j$ where $\displaystyle k = \sum_{j=0}^{n-1} k_j\cdot 2^{n-j-1}$ and $k_j\in\{0,1\}$. E.g. $\ \left|31\right>= \left|0\right>_0 \left|0\right>_1 \left|0\right>_2 \left|1\right>_3 \left|1\right>_4 \left|1\right>_5 \left|1\right>_6 \left|1\right>_7$. Then the state vector of the system takes the form $\displaystyle \left|\psi\right> = \sum_{k=0}^{N-1} \psi_k \left|k\right>$. Introduce the $N\times N$ unitary matrix $U=U_{N-1}\cdots U_1U_0$ where $$ SU_kS^* = U_{k+1},\, S = \begin{bmatrix} 0 & 1 \\I_{N-1} & 0 \end{bmatrix},\, U_0 = \begin{bmatrix} Q & 0 \\ 0 & I_{N-2} \end{bmatrix},\, Q = \begin{bmatrix} \sqrt{1 - |\beta|^2} & \beta \\ -\beta^* & \sqrt{1 - |\beta|^2} \\ \end{bmatrix} $$ $U_0$ is unitary due to $Q$ being unitary. $S$ is unitary being a permutation matrix. By induction, each $U_k$ is unitary. Thus, $U$ is unitary. 1. $\beta$ is taken to be $0.15$ for reasons unclear. 2. Initially, prepare the system in the state $\left|\psi\right> \leftarrow \left|0\right>$, i.e. all spins down. 4. Evolve according to $\left|\psi\right> \leftarrow U\left|\psi\right>$ for 199 times. 6. Do something, such as applying a measurement, or nothing. 7. Evolve according to $\left|\psi\right> \leftarrow U^*\left|\psi\right>$ for 199 times. 9. Plot the statistics of interest for all iterations. The author presented these. #### Expected Spin of the $j^{\text{ th}}$ Electron Given the state vector of the system being $\left|\psi\right>$ , the author defines it by $$ s_j = \frac{1}{2} + \frac{1}{2} \left<\psi\right| \left( I_{2^{j-1}} \otimes\begin{bmatrix} -1 & 0 \\ 0 & 1 \\ \end{bmatrix}\otimes I_{2^{n-j-1}} \right) \left|\psi\right> $$ Note that the matrix in the middle differs from the conventional Pauli z matrix by a negation, as the author assigns the spin-down eigenvector to the first basis vector. Furthermore, the author applies extra scaling and translation by half. #### Expected Total Magnetization The author defines it by $\displaystyle \mu = \displaystyle\sum_{j=0}^{n-1} s_j$ . #### Entropy The definition given by the author follows that of Von Neumann. Omitting Boltzmann's constant, $\displaystyle S_{\Gamma} = -\sum_{\gamma\in\Gamma} \operatorname{Tr}(\rho P_{\gamma}) \log\left(\frac {\operatorname{Tr}(\rho P_{\gamma})} {\operatorname{Tr}(P_{\gamma})} \right)$ where $\Gamma$ is a partition over $[N]$ and $\displaystyle P_{\gamma} = \sum_{k\in\gamma}\left|k\right>\left<k\right|$. If $\Gamma$ is the finest partition over $[N]$, the author calls it the microscopic entropy; otherwise, it's called a macroscopic entropy. ### Simple Simulation <!-- [Click here for the plot in action.](https://www.csie.ntu.edu.tw/~b05902035/simulation.html) --> [Click here for the plot in action.](https://observablehq.com/d/01b2cf913e5863fc) Here is an implementation in javascript which runs in modern browsers. ```javascript= function simulate(n, beta, halfIterations) { const N = 1 << n; ``` Let $\alpha = \sqrt{1-|\beta|^2}$ and $k\in[N]$. Then, $\displaystyle U_k \left|\psi\right> = \sum_{k'\in[N]}\psi_{k'}U_k\left|k'\right> = \left( \alpha\,\psi_k+\beta\,\psi_{k+1} \right) \left|k\right> +\left( \alpha\,\psi_{k+1}-\beta^*\psi_k \right) \left|k+1\right> +\sum_{\substack{k'\in[N]} \\ k'\neq k,k+1}\psi_{k'}\left|k'\right>$ ```javascript=+ const U = (beta) => { const alpha = Math.sqrt(1 - beta * beta); return (k, psi) => { const k_ = (k + 1) % N; const x = psi[k], y = psi[k_]; psi[k ] = alpha * x + beta * y; psi[k_] = alpha * y - beta * x; } }; ``` Thus, $U\left|\psi\right> = U_{N-1}\cdots U_1U_0\left|\psi\right>$ yields ```javascript=+ const evolve = (psi) => { const u = U(beta); psi.forEach((_, k) => u(k, psi)); }; ``` Similary, $\displaystyle U^*\left|\psi\right> = U_0^*U_1^*\cdots U_{N-1}^*\left|\psi\right>$ and $\begin{bmatrix}\alpha & \beta \\ -\beta^* & \alpha\end{bmatrix}^* = \begin{bmatrix}\alpha & -\beta^* \\ \beta & \alpha\end{bmatrix}$ give ```javascript=+ const reverse = (psi) => { const u = U(-beta); psi.forEach((_, k) => u(N - k - 1, psi)); }; ``` $$ \begin{align} & \left<\psi\right| \left( I_{2^{j-1}} \otimes\begin{bmatrix} -1 & 0 \\ 0 & 1 \\ \end{bmatrix}\otimes I_{2^{n-j-1}} \right) \left|\psi\right> \\=\;& \left( \sum_{k_1,k_2,k} \psi_{k_1,k,k_2}^* \left<k_1\right|\left<k\right|\left<k_2\right| \right) \left( I_{2^{j-1}} \otimes\begin{bmatrix}-1 & 0 \\0 & 1 \end{bmatrix}\otimes I_{2^{n-j-1}} \right) \left( \sum_{k_1',k_2',k'} \psi_{k_1',k',k_2'} \left|k_1'\right>\left|k'\right>\left|k_2'\right> \right) \\=\;& \sum_{k_1,k_1'}\sum_{k_2,k_2'}\sum_{k,k'} \psi_{k_1,k,k_2}^* \psi_{k_1',k',k_2'} \left<k_1\right|\left.k_1'\right> \left<k\right|\begin{bmatrix}-1 & 0 \\0 & 1 \end{bmatrix}\left|k'\right> \left<k_2\right|\left.k_2'\right> \\=\;& \sum_{k_1,k_2}\sum_{k,k'} \psi_{k_1,k,k_2}^* \psi_{k_1,k',k_2} (-1)^{k+1}\left<k\right|\left.k'\right> \\=\;& \sum_{k_1,k_2} \left( \psi_{k_1,1,k_2}^* \psi_{k_1,1,k_2} - \psi_{k_1,0,k_2}^* \psi_{k_1,0,k_2} \right) \\=\;& \sum_{k_j=1}|\psi_k|^2 - \sum_{k_j=0}|\psi_k|^2 \end{align} $$ ```javascript=+ const spin = (psi) => Array.from({length: n}, (_, j) => { const mask = 1 << (n - j - 1); return psi.reduce((s, p, k) => s + (k & mask ? p * p : -p * p), 0.0); }); ``` This is the actual simulation. ```javascript=+ const psi = Array(N).fill(0.0).fill(1.0, 0, 1); return [spin(psi), ...Array.from({length: halfIterations}, (_) => (evolve(psi), spin(psi))), ...Array.from({length: halfIterations}, (_) => (reverse(psi), spin(psi))), ]; } ``` The plot is powered by `Plotly,js`. ```javascript=+ function plot(z) { const addPlot = (name, data, layout) => { document.body.insertAdjacentHTML('beforeend', `<div id="${name}""></div>`); Plotly.newPlot(name, [data,], layout); }; addPlot('spin', { z: z, type: 'surface', contours: {x: {show: true}}, }, { title: 'Expected Spin of Each Electron', width: 900, height: 600, scene: { aspectmode: 'manual', aspectratio: {x:2, y:3, z:1}, camera: { up: {x:0, y:0, z:1}, center: {x:0, y:0, z:-0.8}, eye: {x:5/2.2, y:-4/2.2, z:3/2.2}, }, }, }); addPlot('magnetization', { y: z.map((eight) => eight.reduce((s, v) => s + v, 0.0)), type: 'scatter', }, { title: 'Expected Total Magnetization', width: 900, }); } ``` Putting everything together. ```javascript=+ plot(simulate(8, 0.15, 199)); ``` The simulation above serves as the basis for comparison for more interesting simulations where particular measurements are made at the $200^{\text{ th}}$ iteration. To better study the effect of measurements, the author maintains an ensemble of identically prepared systems instead of a specific system. * The distribution of states of an ensemble of identically prepared systems after a measurment is exactly the propability distribution of the outcome of a measurement on a single system. If there is a way of maintaining such an ensemble, one can obtain much more intriguing data, such as the averaged expected total magnetization of said ensemble, efficiently compared to the uninteresting collapse of a specific single system. * The author suggests the density operator approach. * In general, the density operator will be in a mixed state after a measurement, i.e. $\ \nexists\left|\psi\right>\in \operatorname{span}\{\left|k\right>\}_{k=0}^{N-1}$ s.t. $\rho=\left|\psi\right>\left<\psi\right|$. Thus, my previous approach, maintaining a state vector, is no longer feasible. Instead, the whole density operator must be maintained. ### Density Operator Approach Let $n = 8$, $N = 2^n = 256$, and denote the up-spin and down-spin of the $j^{\text{ th}}$ electron by $\left|1\right>_j$ and $\left|0\right>_j$ respectively where $j\in[n]$. Let $\{\left|k\right>\}_{k\in[N]}$ be the ordered basis for the composite system such that $\displaystyle \left|k\right> = \bigotimes_{j=0}^{n-1}\left|k_j\right>_j$ where $\displaystyle k = \sum_{j=0}^{n-1} k_j\cdot 2^{n-j-1}$ and $k_j\in\{0,1\}$. Then the state takes the form $\displaystyle \rho = \sum_{i,j=0}^{N-1}\rho_{ij}\left|i\right>\left<j\right|$. Introduce $\displaystyle U=\prod_{k=0}^{N-1}U_{N-k-1}$ s.t. $SU_kS^* = U_{k+1}$ where $$ S = \begin{bmatrix} 0 & 1 \\I_{N-1} & 0 \end{bmatrix},\, U_0 = \begin{bmatrix} Q & 0 \\ 0 & I_{N-2} \end{bmatrix},\, Q = \begin{bmatrix} \sqrt{1-|\beta|^2} & \beta \\ -\beta^* & \sqrt{1-|\beta|^2} \end{bmatrix} $$ $\prod_{k=0}^{m-1}U_k = S^m(S^*U_0)^m \implies \prod_{k=0}^{m}U_k = S^mU_0(S^*)^mS^m(S^*U_0)^m = S^{m+1}(S^*U_0)^{m+1}$ and $U_1U_0=SU_0S^*U_0=S^2(S^*U_0)^2$ yields $U = S^N(S^*U_0)^N = (S^*U_0)^N$. This form is more concise but more computationally expensive. In this case, $$ U = \begin{bmatrix} -\beta^* & \sqrt{1-|\beta|^2} & 0 \\ 0 & 0 & I_{N-2} \\ \sqrt{1-|\beta|^2} & \beta & 0 \\ \end{bmatrix}^N $$ 1. Initially, prepare the system where all spins are downward, i.e. $\rho \leftarrow \left|0\right>\left<0\right|$. 2. Evolve according to $\rho \leftarrow U\rho U^*$ for 199 times. Since the system are in a pure states, calculations are identical that of the previous section. 4. Apply a measurement $M$, i.e. $\displaystyle \rho \leftarrow \sum_m \left<m\right|\rho\left|m\right> \left|m\right>\left<m\right|$. Before the measurement, the system is in a pure state $\rho = \left|\psi\right>\left<\psi\right|$ where $\displaystyle \left|\psi\right> = \sum_{k=0}^{N-1}\psi_k\left|k\right>$. $\displaystyle Z^{\otimes n}\left|k\right> = \bigotimes_{j=0}^{n-1} Z\left|k_j\right> = \bigotimes_{j=0}^{n-1} (-1)^{k_j + 1}\left|k_j\right> = (-1)^{\sum_{j=0}^{n-1}k_j + n}\left|k\right>$, implies the basis vectors are the eigenvector of the complete measurement of spins, and the state will become $$ \rho \leftarrow \sum_{k=0}^{N-1} \left<k\right|\left.\psi\right>\left<\psi\right|\left.k\right> \left|k\right>\left<k\right| = \sum_{k=0}^{N-1} |\psi_k|^2 \left|k\right>\left<k\right| $$ 6. Evolve according to $\rho \leftarrow U\rho U^*$ for 199 times. $$ U_j\rho U_j^* = \begin{bmatrix} I & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & I \\ \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \\ \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ 0 & Q^* & 0 \\ 0 & 0 & I \\ \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12}Q^* & R_{13} \\ QR_{21} & QR_{22}Q^* & QR_{23} \\ R_{31} & R_{32}Q^* & R_{33} \\ \end{bmatrix} $$ Only, $8N$ entries requires update. 7. Plot the statistics of interest for all iterations. The author presented these.