# Polynomial Calculus Space and Resolution Width [:link: **FOCS 2019**](https://conferences.computer.org/focs/2019/pdfs/FOCS2019-7pBwCpNH4Mz2L4MJWVl6Xp/7cpQGJYEFsceQxRIvfKPTo/7z604k5UcdLYt5kLZpdDKD.pdf) *Nicola Galesi* *Leszek A. Kolodziejczyk* *Neil Thapen* --- ## Conjunctive Normal Form \begin{align*} (x_1 \vee \bar x_2) \wedge (x_3 \vee \bar x_4 \vee x_5) \wedge x_6 \\ \{ \{ x_1, \bar x_2 \}, \{ x_3, \bar x_4, x_5 \}, \{ x_6 \} \} \end{align*} - ==boolean variable==: a 0/1 valued variable - ==literal==: a boolean variable or its negation - ==clause==: a disjunction/set of literals - ==clause width==: number of literals in a clause - ==$k$-clause==: a clause with width at most $k$ - ==CNF==: a conjunction/set of clauses - ==$k$-CNF==: a CNF containing exactly $k$ clauses - ==assignment==: a function that assigns variables values - ==assignment width==: the cardinality of the domain of an assignment - ==$k$-assignment==: an assignment with width at most $k$ > **Any sentence can be made into a CNF.** > :::spoiler Proof > Let $c_1,\dots,c_k$ be literals, and $C = c_1 \vee\cdots\vee c_k$. > Let $P_1,\dots,P_n$ be clauses, and $P = P_1 \wedge\cdots\wedge P_n$. > Let $Q_1,\dots,Q_m$ be clauses, and $Q = Q_1 \wedge\cdots\wedge Q_m$. > > || sentence(s) | CNF | reason | > |:-:|:-:|:-:|:-:| > |(1)| $C,P,Q,P \wedge Q$ | same | definition | > |(2)| $\bar C$ | $$ \bigwedge_{i=1}^k \bar c_i $$ | De Morgan | > |(3)| $P \vee Q$ | $$ \bigwedge_{i=1}^n \bigwedge_{j=1}^m (P_i \vee Q_j)$$ | distribution | > |(4)| $\bar P$ | $$ \bigvee_{i=1}^n \bar P_i $$ | De Morgan, (1), (2) | > |(5)| $P \Rightarrow Q$ | $\bar P \wedge Q$ | definition, (1), (4) | > >|(6)| $P \Leftrightarrow Q$ | $(P \Rightarrow Q) \wedge (Q \Rightarrow P)$ | definition, (1), (5) | > ::: > [color=brown] ## Resolution $C_1,C_2$ are clauses, and $x$ is a literal. $$ \frac {C_1 \vee x \quad \bar x \vee C_2} {C_1 \vee C_2} \qquad \frac {C_1 \cup \{x\} \quad \{\bar x\} \cup C_2} {C_1 \cup C_2} $$ > **Resolution is a consequence of natural deduction.** > :::spoiler Proof > $$ > \displaystyle\frac { > \displaystyle\frac { > \displaystyle\frac { > [\bar C_1] > }{ > \bar C_1 > } > \quad > \displaystyle\frac { > C_1 \vee x > }{ > \bar C_1 \Rightarrow x > } > }{ > x > } > \quad > \displaystyle\frac { > \bar x \vee C_2 > }{ > x \Rightarrow C_2 > } > }{ > \displaystyle\frac { > C_2 > }{ > \displaystyle\frac { > \bar C_1 \Rightarrow C_2 > }{ > C_1 \vee C_2 > } > } > [\Rightarrow\text{Intro.}] > } > $$ > ::: > [color=brown] ## Resolution Refutation