Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> Hi, I was wondering if you could explain what this problem is asking and why it is important? It looks tricky. </div></div> <div><div class="alert blue"> Sure, which problem did you need help with? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> "For the function $f(x)=8x^2+4x+3$ find the exact formula for $f'(x)$ using only the definition of the derivative." </div></div> <div><img class="left"/><div class="alert gray"> I don't even know where to start... </div></div> <div><div class="alert blue"> Okay, first lets look at what they are asking. What exactly is $f'(x)$? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> It is the derivative of $f(x)$, right? </div></div> <div><div class="alert blue"> Yes, thats right. In other words, it is the slope of the function $f(x)$. The problem states that we must use the definition of the derivative. Do you remember what that formula looks like? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> $f'(x)=\frac{f(x+h)-f(x)}{h}$ </div></div> <div><div class="alert blue"> That is super close! You are just missing the part that tells us we are looking for a LIMIT definition. This one is just the general one where the limit is for $h$ as it goes toward $0$. It should look like this: $f'(x)=$$\lim_{h \to 0}$$\frac{f(x+h)-f(x)}{h}$ </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Oh yeah! That looks right! </div></div> <div><div class="alert blue"> The limit definition is important because once we find it ONCE for a function, we can find all the derivatives for any value of $x$ of the function using the new formula- which is usually way easier! </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> I sure hope so! </div></div> <div><div class="alert blue"> Okay. So now lets put our function into this formula. It should look like this: $f'(x)=$$\lim_{h \to 0}$$\frac{[8(x+h)^2+4(x+h)+3]-(8x^2+4x+3)}{h}$ Now show me how you would simplify it and combine like terms. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> $f'(x)=$$\lim_{h \to 0}$$\frac{[8(x+h)^2+4(x+h)+3]-(8x^2+4x+3)}{h}$ $f'(x)=$$\lim_{h \to 0}$$\frac{8(x^2+2hx+h^2)+4x+4h+3-8x^2-4x-3}{h}$ $f'(x)=$$\lim_{h \to 0}$$\frac{8x^2+16hx+8h^2+4x+4h+3-8x^2-4x-3}{h}$ $f'(x)=$$\lim_{h \to 0}$$\frac{16hx+8h^2+4h}{h}$ </div></div> <div><div class="alert blue"> Great! Now lets pull the h's out of the numerator so we can get rid of the h in the denominator. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> $f'(x)=$$\lim_{h \to 0}$$\frac{h(16x+8h+4)}{h}$ $f'(x)=$$\lim_{h \to 0}$$(16x+8h+4)$ </div></div> <div><div class="alert blue"> Awesome! Now we can plug $0$ in for $h$. We know that $8*0=0$. What is our formula now for the derivative of $f(x)$ ? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> $f'(x)= 16x+4$ That was way easier when we broke it down into parts and now I know why we do it! Thanks! </div></div> <div><div class="alert blue"> You are welcome! See you in class! </div><img class="right"/></div> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.