[toc]
## Ch 2
### Population
$\mu: \text{population mean}$
$\begin{align}
\mu=\frac{\sum{x_i}}{N}
\end{align}$
$\sigma: \text{populatoin variance}$
$\begin{align}
\sigma&=\frac{\sum(x_i-\mu)^2}{N}\\
&=\frac{\sum x_i^2}{N}-\mu^2
\end{align}$
### Sample
$\bar x:\text{sample mean}$
$\begin{align}
\bar x =\frac{\sum{x_i}}{n}
\end{align}$
$s^2: \text{sample variance}$
$\begin{align}
s^2&=\frac{\sum(x_i-\bar x)^2}{n-1}\\
&=\frac{\sum x_i^2-\frac{(\sum x_i)^2}{n}}{n-1}
\end{align}$
$s: \text{sample standard deviation}$
$\begin{align}
s=\sqrt{s^2}
\end{align}$
### Stem and Leaf Diagram
**e.g. 1**

**e.g. 2**

### Histograms
**e.g. 1**

**e.g. 2**

### Bar chart
**e.g. 1**

### Pareto chart
Basically bar graph but sorted.
**e.g. 1**

### Box Plots

**whisker**
the min/max point within 1.5 IQR from the quartiles
**outliers**
points within 3 IQR
### Sample Correlation Coefficient
$\begin{align}
S_{xy}&=\sum(x_i-\bar x)(y_i-\bar y)\\
&=\sum x_i y_i -\frac1n(\sum x_i)(\sum y_i)
\end{align}$
$\begin{align}
r=\frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}
\end{align}$
## Ch 3
### Random variable
a variable whose measured value can change in a random experiment.
**e.g. 1**
toss the coins, the total number of heads observed is called a random variable.
### Discrete (Countable)
countable object, finite or infinite
### Continuous
infinite and uncountable, measurable
### Probability Density Function (PDF)
$P(a<X<b)=\int^b_af(x)dx$

if X is continuous random variable
$P(x=a)=0$
### Cumulative Distribution Function (CDF)
$F(x)=P(X\leq x)=\int^x_{-\infty}f(u)du$
### Mean (Expected value)
$\mu=E(X)=\int^\infty_{-\infty}xf(x)dx$
### Variance
$\sigma^2=V(X)=\int^\infty_{-\infty}(x-\mu)^2f(x)dx=E(X^2)-\mu^2$
The **standard deviation** of $X$ is $\sigma$
### Normal distribution (Gaussian distribution)
Bell-shaped and symmetrical
denote as $X\sim N(\mu,\sigma^2)$
### Standard normal random variable
$\begin{align}
Z=\frac{X-\mu}{\sigma}
\end{align}$
$P(X\leq x)=P(Z\leq z)$
where $Z$ is a standard normal random variable, and $z=(x-\mu)/\sigma$ is the z-value obtained by standardize $x$.
### Normal Probability Plots
For determining whether sample data conform to a hypothesized distribution.
### Probability Mass Function
for **discrete** random variable
$f(x_i)=P(X=x_i)$
### Cumulative Distribution Function
for **discrete** random variable
$F(x)=P(X\leq x)=\sum f(x_i)$
### Mean and Variance
the same except the integral is replaced by sum.
### Binomial Distribution
A trail with only **two possible outcomes** is call **Bernoulli trial**.
usually assumed
1. the random experiment are **independent**.
2. the probability of a success on each trial is **constant**
#### Mean & Variance
$\mu = E(X)=np$
$\sigma^2=V(X)=npq=np(1-p)$
### Poisson Process
Number of events that occur in an interval.
### Poisson Distribution
#### Mean & Variance
$\mu=\sigma^2=\lambda=np$
$\begin{align}
p(x)=\frac{\lambda^xe^{-\lambda}}{x!}
\end{align}$
### Exponential Distribution
Is a continuous distribution.
**e.g.**
The length of time or the distance between occurrences of random events.
$\begin{align}
\theta = \frac{1}{\lambda}
\end{align}$
#### pdf
$f(x)=\lambda e^{-\lambda x}$
#### Mean & Variance
$\begin{align}
E(X)=\frac{1}{\lambda}
\end{align}$
$\begin{align}
V(X)=\frac{1}{\lambda^2}
\end{align}$
Mean = SD = $\theta$
### Normal Approximation to Binomial and Poisson Distributions
1. Requires large sample size
2. Need correction for continuity
$np\geq 5 \& nq\geq 5$
### formulas

### Power
$1-\beta$ (type II error)
The power of a statistical test is the probability of rejecting the null hypothesis $H_0$ when the alternative hypothesis is true.
### P-Values in Hypothesis Testing
the smallest level of significance that would lead to rejection of null Hypothesis $H_0$
### Large Sample Test
if $n\geq 30$, the sample variance $s^2$ will be close to $\sigma^2$ for most samples
### Confidence Interval
95% of our confidence intervals will contain $\mu$ and 5% will not.
#### confidence level (confidence coefficient)
$1-\alpha$ (type I error)