--- tags: homework --- # Physics homework 1 --- ## 2 ![](https://i.imgur.com/uVQ3yWX.png) $\text{let }p(t)=\text{the position of a projectile after }t\text{ second}$ $p_x(t)=v_{0x}t=(v\cos\theta)t$ $p_y(t)=v_{0y}t-\frac12a_yt^2=(v\sin\theta)t-\frac12gt^2$ $p_y'(t)=v\sin\theta-gt$ $\text{let }t_m=\text{the time that x-axis of the projectile equals to }2h$ $p_x(t_m)=\sqrt{4gh}\cos\theta t_m=2h$ $t_m=\frac{2h}{\sqrt{4gh}\cos\theta}$ $p_y(t_m)=\sqrt{4gh}\sin\theta t_m-\frac12g{t_m}^2=h$ $\Rightarrow \sqrt{4gh}\sin\theta\frac{2h}{\sqrt{4gh}\cos\theta}-\frac12g(\frac{2h}{\sqrt{4gh}\cos\theta})^2=h$ $\Rightarrow\frac{\sqrt{4gh}\sin\theta2h(\sqrt{4gh}\cos\theta)-2gh^2}{(\sqrt{4gh}\cos\theta)^2}=h$ $\Rightarrow 4gh^2\sin(2\theta)-4gh^2\cos^2\theta=2gh^2$ $\Rightarrow gh^2(4\sin(2\theta)-4(\frac{1+\cos2\theta}2))=2gh^2$ $\Rightarrow4\sin(2\theta)-2\cos(2\theta)=2+2=4$ $\Rightarrow 2\sin(2\theta)-\cos(2\theta)=2$ $\Rightarrow \sqrt{5}(\frac{2}{\sqrt{5}}\sin(2\theta)-\frac{1}{\sqrt{5}}\cos(2\theta))=2$ $\text{Let }\sin\phi=\frac1{\sqrt5},\ \cos\phi=\frac2{\sqrt5}$ $\Rightarrow\sin(2\theta-\phi)=\frac{2}{\sqrt{5}}= \pm\cos\phi$ $2\theta-\phi=\phi-\frac{\pi}{2}$ $\Rightarrow\theta=\phi-\frac{\pi}4\text{ which < 0, conflict}$ $2\theta-\phi=\frac{\pi}{2}-\phi$ $\Rightarrow \theta=\frac{\pi}{4}$ $\text{therefore, }\theta=\frac{\pi}4 \text{ is the only answer to this question}$ --- ## 3 ![](https://i.imgur.com/DmlLZlZ.png) ### a. ![](https://i.imgur.com/wjGaCjs.png =240x) $\text{Let }T=\text{the time of flight}$ $\vec v_{sum}=\vec v+\vec u$ $T=\frac{L}{|\vec v_{sum}|}=\frac{L}{|\vec v+\vec u|}=\frac{L}{v+u}$ ### b. ![](https://i.imgur.com/8JP5B6w.png =240x) $|\vec v_{sum}|=\sqrt{v^2-u^2}$ $T=\frac{L}{|\vec v_{sum}|}=\frac{L}{\sqrt{v^2-u^2}}$ ### c. ![](https://i.imgur.com/opUydtQ.png) $h=u\sin\theta$ $|\vec v_{sum}|=u\cos\theta+\sqrt{v^2-h^2}=u\cos\theta+\sqrt{v^2-u^2\sin^2\theta}$ $T=\frac{L}{|\vec v_{sum}|}=\frac{L}{u\cos\theta+\sqrt{v^2-u^2\sin^2\theta}}$ --- ## 4 ![](https://i.imgur.com/yna3tC3.png) ### a. $a_r=\frac{v^2}{r}=25m/s^2$ ### b. $a_t=g$ ### c. ![](https://i.imgur.com/3Q4bcc7.png) ### d. magnitude: $a=\sqrt{{a_r}^2+{a_t}^2}=\sqrt{25+g^2}$ direction $\phi$ : $\arctan(\frac{a_r}{a_t})$ --- ## 5 ![](https://i.imgur.com/FtGx0YS.png) ### a. ![](https://i.imgur.com/FPJZGre.png =360x) ![](https://i.imgur.com/uj1nq5W.png =360x) ### b. $\text{consider the 5kg block}$ $N=5g$ $T=f_kN=0.2(5g)=g$ $\text{consider the 10kg block}$ $N=5g+10g=15g$ $a=\frac{F_{sum}}{m}=\frac{F-f_kN-f_k(5g)}{10}=\frac{45N-4g}{10}$ --- ## 6 ![](https://i.imgur.com/ndwOtI3.png) ### a. $v_{m1}=2v_{m2}=8m/s$ $T_{s1}=m_1a=m_1(\frac{{v_{m1}}^2}{2l})=4(\frac{64}1)=256(N)$ $\text{the force that }m_2\text{ need to keep rotating}=m_2\frac{{v_{m2}}^2}{l}=3(\frac{4}{0.5})=24(N)$ $T_{s2}=256+24=280(N)$ ### b. String 2, because the tension in string 2 is bigger than string 1. --- ## 7 ![](https://i.imgur.com/ob33Ezz.png) ### a. $-bv=ma$ $\Rightarrow -bv=m\frac{dv}{dt}$ $\Rightarrow m\frac{dv}{dt}+bv=0\rightarrow \text{first order differential equation}$ $\text{Let }v_h(t)=Ae^{\alpha t}$ $\Rightarrow mA\alpha e^{\alpha t}+bAe^{\alpha t}=0$ $\Rightarrow m\alpha+b=0$ $\alpha=-\frac{b}m$ $v(t)=Ae^{-\frac{b}{m}t}$ $v(0)=v_i=Ae^0=A$ $\Rightarrow A=v_i$ $v(t)=v_i\cdot e^{-\frac{b}{m}t}$ ### a. (another solution) $-bv=m(dv/dt)$ $\Rightarrow -\frac{b}{m}dt=\frac{dv}{v}$ $\Rightarrow \frac{-b}{m}\int_0^t dt=\int_{v_i}^v\frac{1}{v}dv$ $\Rightarrow-\frac{b}{m}t=\ln v|^v_{v_i}=\ln v-\ln v_i=\ln\frac{v}{v_i}$ $\Rightarrow \frac{v}{v_i}=e^{-\frac{bt}{m}}$ $\Rightarrow v=v_i\cdot e^{-\frac{bt}{m}}$ ### b. ![](https://i.imgur.com/2HE1wqk.png =360x) ### c. $e^{-\frac{bt}{m}}$ will not be $0$ unless $t=\infty$, therefore the answer is no. ### d. $\begin{align} &\int^\infty_0v_ie^{-\frac{bt}{m}}dt\\=&v_i\int^\infty_0e^{-\frac{bt}{m}}dt\\=&v_i(-\frac mbe^{\frac{-bt}m})|^\infty_0\\=&0-(-\frac{mv_i}{b})=\frac{mv_i}{b}\text{ which is constant}\end{align}$ Therefore, the answer is yes. --- ## 8 ![](https://i.imgur.com/ZG7uZFW.png) ### a $F-bv=ma$ $\Rightarrow F-bv=m\frac{dv}{dt}$ $\Rightarrow m\frac{dv}{dt}+bv=F\rightarrow \text{first order differential equation}$ $v(t)=v_h(t)+v_p(t)$ $\text{while }t\rightarrow\infty,\ \frac{dv(t)}{dt}\rightarrow 0$ $\Rightarrow \frac{dv(t)}{dt}bv(t)=F\rightarrow bv_p=F$ $\text{therefore, }v_p=\frac{F}b$ $\text{while }m\frac{dv(t)}{dt}+bv(t)=0$ $m\frac{dv(t)}{dt}+bv(t)=0$ $\text{Let }v_h(t)=Ae^{\alpha t}$ $\Rightarrow mA\alpha e^{\alpha t}+bAe^{\alpha t}=0$ $\Rightarrow m\alpha+b=0$ $\alpha=-\frac{b}m$ $v(t)=v_h(t)+v_p(t)=Ae^{-\frac{b}{m}t}+\frac{F}b$ $v(0)=v_0=Ae^0+\frac{F}{b}=A+\frac{F}{b}$ $\Rightarrow A=v_0-\frac{F}b$ $\begin{align} &v(t)=v_h(t)+v_p(t)\\ =&(v_0-\frac Fb)e^{-\frac{b}{m}t}+\frac{F}b\\ \end{align}$ $\because F=mg$ $v(t)=(v_0-\frac{mg}{b})e^{-\frac{b}{m}t}+\frac{mg}b$ ### a. (another solution) $\begin{align} &F_{all}=mg-bv=ma\\ \Rightarrow&a=\frac{mg-bv}{m} \end{align}$ $\begin{align} &\frac{dv}{dt}=\frac{mg-bv}m\\ \Rightarrow & \int^v_{v_0}\frac{dv}{mg-bv}=\frac1m\int^t_0dt\\ \Rightarrow&(-\frac{1}{b}\ln(mg-bv))|^v_{v_0}=\frac{t}{m}\\ \Rightarrow&-\frac{1}{b}\ln(mg-bv)-(-\frac1b\ln(mg-bv_0))=\frac{t}m\\ \Rightarrow&\ln(mg-bv)=\frac{-bt+m\ln(mg-bv_0)}{m}\\ \Rightarrow&v=-\frac{1}{b}(-mg+e^{\frac{-bt}{m}+\ln(mg-bv_0)})\\ \Rightarrow&v=\frac{mg}{b}+(v_0-\frac{mg}{b})e^{\frac{-bt}{m}} \end{align}$ ### b. $v_{ternimal}=\lim_{t\rightarrow \infty}\frac{mg}{b}$ $\tau=\frac{m}{b}$ ### c. $\text{same as a., however }F=-mg$ $\text{Therefore, }v(t)=(v_0+\frac{mg}{b})e^{-\frac{b}{m}t}-\frac{mg}b$