# 個經Hw3 ## Problem 2 (2.7)  $q_1=4\frac{p_2^2}{p_1^2}$ ## Problem 4 (3.11) 由$MRS=MRT\ 可以得到\ \frac{U_1}{U_2}=\frac{\frac{0.5}{q_1}}{\frac{0.5}{q_2}}=\frac{q_2}{q_1}=\frac{p_1}{p_2}\Longrightarrow p_1q_1=p_2q_2$,接著求解$E(p_1,p_2,\bar U)$,可以先得到$q_1=e^{2\bar U-ln\ q_2}=\frac{e^{2\bar U}}{q_2}$ 代回$E=p_1q_1+p_2q_2$可以得到$E=2\sqrt{p_1p_2e^{2\bar U}}$,對$p_1$微分後得到補償函數$H(p_1,p_2,\bar U)=q_1=\sqrt{\frac{p_2e^{2\bar U}}{p_1}}$ ## Problem 5 (4.2)  ## Problem 6 (4.8)  $L=tq_1^*$ So optimal utility of lump-sum tax >= specific tax (Draw graph) ## Problem 7 Ch4 5.1  ## Problem 8 Ch4 5.3 bundle 1 is better Because bundle 2 is under buget constraint of bundle 1
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up