# 個經Hw3 ## Problem 2 (2.7) ![](https://i.imgur.com/OK2LDhL.png) $q_1=4\frac{p_2^2}{p_1^2}$ ## Problem 4 (3.11) 由$MRS=MRT\ 可以得到\ \frac{U_1}{U_2}=\frac{\frac{0.5}{q_1}}{\frac{0.5}{q_2}}=\frac{q_2}{q_1}=\frac{p_1}{p_2}\Longrightarrow p_1q_1=p_2q_2$,接著求解$E(p_1,p_2,\bar U)$,可以先得到$q_1=e^{2\bar U-ln\ q_2}=\frac{e^{2\bar U}}{q_2}$ 代回$E=p_1q_1+p_2q_2$可以得到$E=2\sqrt{p_1p_2e^{2\bar U}}$,對$p_1$微分後得到補償函數$H(p_1,p_2,\bar U)=q_1=\sqrt{\frac{p_2e^{2\bar U}}{p_1}}$ ## Problem 5 (4.2) ![](https://i.imgur.com/mNvwQd8.png) ## Problem 6 (4.8) ![](https://i.imgur.com/I5QVRSB.jpg) $L=tq_1^*$ So optimal utility of lump-sum tax >= specific tax (Draw graph) ## Problem 7 Ch4 5.1 ![](https://i.imgur.com/UlLNvgO.png) ## Problem 8 Ch4 5.3 bundle 1 is better Because bundle 2 is under buget constraint of bundle 1