# 個經HW 5 ## Q1 星號題 ## Q2 $-\frac{aL^{\rho-1}}{bK^{\rho-1}}$ ## Q3 oirginal: $\frac{df}{dL}$ and $\frac{df}{dK}$ After it goes to $xL$ and $xK\ \longrightarrow$ $\frac{df(xL,xK)}{dxL}=\frac{x^gdf(L,K)}{xdL}=x^{g-1}\frac{df(L,K)}{dL}$ Similarly, $\frac{df(xL,xK)}{dxK}=\frac{x^gf(L,K)}{xdK}=x^{g-1}\frac{df(L,K)}{dK}$ ## Q4 $\frac{dK}{dL}=-\frac{MP_L}{MP_K}$ 又由5.7可知$MP_L和MP_K$都是homogeneous of degree g-1 因此可以知道當scale翻了x倍時$-\frac{MP_L}{MP_K}=\frac{dK}{dL}$不變,因此MRTS只會和$\frac{K}{L}$有關 ## Q5 **記得改成 partial** $x^gf(L,K)=f(xL,xK)\rightarrow gx^{g-1}f(L,K)=x^{g-1}\frac{df(L,K)}{dL}L+x^{g-1}\frac{df(L,K)}{dK}K$ 可以得到 $gf(L,K)=\frac{df}{dL}L+\frac{df}{dK}K$ Constant return to scale: $f(L,K)=\frac{df}{dL}L+\frac{df}{dK}K$ $MP_L$是勞工工資,$MP_K$是資本租金 -- - CH 7 ## Q1 We know $AC(q) = AVC(q) + AFC(q)$ $AFC(q_2) > AFC(q_1)\ \ if \ \ q_2 < q_1$ (Obviously) and $\forall q\neq q_1, AVC(q_1) < AVC(q)$ $\forall q \neq q_2, AC(q_2) < AC(q)$ since AVC and AC are both U-shaped We want to prove $q_1 \leq q_2$ Suppose not => $q_1 > q_2$ by assumption $AVC(q_2)>AVC(q_1)$ $AC(q_1)>AC(q_2)$ $-AVC(q_1)>-AVC(q_2)$ thus $AC(q_1)-AVC(q_1) > AC(q_2)-AVC(q_2)$ => $AFC(q_1) > AFC(q_2)$ Which leads to contradiction. ## Q2, Q3 ![](https://i.imgur.com/CCLpYUt.jpg) 大於等於跟大於 (resp. 小於) 可以注意一下 ## Q4 $F=400$、$AVC=200-6q+0.3q^2$、$AC=200-6q+0.3q^2+\frac{400}{q}$、$MC=200-12q+0.9q^2$、$AFC=\frac{400}{q}$ ## Q5 ![](https://i.imgur.com/LYMvNP3.jpg)