<style>
.slides {
font-size: 90%;
}
.reveal h1 .mathjax,
.reveal h2 .mathjax,
.reveal h3 .mathjax,
.reveal h4 .mathjax,
.reveal h5 .mathjax,
.reveal h6 .mathjax {
text-transform: none;
}
</style>
## $\text{QMA}$ and the power of "positivity"
Kunal Marwaha
University of Chicago
<br/>
joint with Roozbeh Bassirian, Bill Fefferman [(arXiv)](https://arxiv.org/abs/2306.13247)
see also Jeronimo and Wu [(STOC '23)](https://dl.acm.org/doi/abs/10.1145/3564246.3585248)
---
## Outline
1. An introduction to $\text{QMA}^+$
2. Proof outline
---
## Outline
1. **An introduction to $\text{QMA}^+$**
2. <span style="color: gray">Proof outline</span>
----
## Context: $\text{QMA}$ and $\text{QMA}(2)$
<br/>
What is the power of *unentangled* proofs?
----
## Review: $\text{QMA}_{c,s}$
Set of decision problems that have a BQP verifier $M$, and:
* If <!-- .element: class="fragment" data-fragment-index="1" --> YES (completeness): $\exists$ $\text{poly}(n)$-qubit $|\psi\rangle$ witness that makes $M$ accept w.p. $\ge c(n)$.
* If <!-- .element: class="fragment" data-fragment-index="2" --> NO (soundness): All $\text{poly}(n)$-qubit $|\psi\rangle$ witnesses make $M$ accept w.p. $\le s(n)$.
----
## Review: $\text{QMA}(2)_{c,s}$
<span style="color: gray">Set of decision problems that have a BQP verifier $M$, and:
</span>
* <span style="color: gray">If YES (completeness): $\exists$ $\text{poly}(n)$-qubit </span>$|\psi_1\rangle \otimes |\psi_2\rangle$ <span style="color: gray">witness that makes $M$ accept w.p. $\ge c(n)$</span>.<!-- .element: class="fragment" data-fragment-index="1" -->
* <span style="color: gray">If NO (soundness): All $\text{poly}(n)$-qubit </span> $|\psi_1\rangle \otimes |\psi_2\rangle$ <span style="color: gray">witnesses make $M$ accept w.p. $\le s(n)$</span>.<!-- .element: class="fragment" data-fragment-index="2" -->
----
## Facts about $\text{QMA}$, $\text{QMA}(2)$
**Gap amplification** (as long as $c(n) - s(n) \ge \frac{1}{\text{poly}(n)}$):
* $\text{QMA}$: <!-- .element: class="fragment" data-fragment-index="1" --> via parallel repetition
* $\text{QMA}(2)$: <!-- .element: class="fragment" data-fragment-index="2" --> using the *product test* [[HM10]](https://arxiv.org/abs/1001.0017)
<p></p>
<br/>
**Upper bounds** (better than $\text{NEXP}$): <!-- .element: class="fragment" data-fragment-index="3" -->
* $\text{QMA} \subseteq \text{PSPACE}$ using semidefinite programming
(in fact, $\subseteq \text{PP}$ by Kitaev and Watrous) <!-- .element: class="fragment" data-fragment-index="4" -->
* Only <!-- .element: class="fragment" data-fragment-index="5" --> $\text{QMA}(2) \subseteq \text{NEXP}$. *Why can't we do better?*
----
## [[JW23]](https://dl.acm.org/doi/abs/10.1145/3564246.3585248): $\text{QMA}^+_{c,s}$
<span style="color: gray">Set of decision problems that have a BQP verifier $M$, and:
</span>
* <span style="color: gray">If YES (completeness): $\exists$ $\text{poly}(n)$-qubit $|\psi\rangle$ witness</span> **with non-negative amplitudes** <span style="color: gray">that makes $M$ accept w.p. $\ge c(n)$</span>.<!-- .element: class="fragment" data-fragment-index="1" -->
* <span style="color: gray">If NO (soundness): All $\text{poly}(n)$-qubit $|\psi\rangle$ witnesses</span> **with non-negative amplitudes** <span style="color: gray">make $M$ accept w.p. $\le s(n)$</span>.<!-- .element: class="fragment" data-fragment-index="2" -->
----
## [[JW23]](https://dl.acm.org/doi/abs/10.1145/3564246.3585248): $\text{QMA}^+(2)_{c,s}$
<span style="color: gray">Set of decision problems that have a BQP verifier $M$, and:
</span>
* <span style="color: gray">If YES (completeness): $\exists$ $\text{poly}(n)$-qubit witness</span> $|\psi_1\rangle \otimes |\psi_2\rangle$ **with non-negative amplitudes** <span style="color: gray">that makes $M$ accept w.p. $\ge c(n)$</span>.
* <span style="color: gray">If NO (soundness): All $\text{poly}(n)$-qubit witnesses</span> $|\psi_1\rangle \otimes |\psi_2\rangle$ **with non-negative amplitudes** <span style="color: gray">make $M$ accept w.p. $\le s(n)$</span>.
----
## Does $^+$ add or remove power?
What if we instead required non-negative amplitudes
only in *completeness*?<!-- .element: class="fragment" data-fragment-index="1" -->
[[GKS14]](https://arxiv.org/abs/1410.2882) show that this is **equal** to $\text{QMA}$ (or $\text{QMA}(2)$).<!-- .element: class="fragment" data-fragment-index="2" -->
<br/>
*Lesson*: <!-- .element: class="fragment" data-fragment-index="3" --> $\text{QMA} \subseteq \text{QMA}^+$ and $\text{QMA}(2) \subseteq \text{QMA}^+(2)$, since we also reduce Merlin's cheating in soundness.
----
## "facts" about $\text{QMA}^+$, $\text{QMA}^+(2)$
**Gap amplification**:
Parallel repetition **fails**.<!-- .element: class="fragment" data-fragment-index="1" -->
*Reason*: Partial measurements can reintroduce complex phases into remaining state.
<!-- .element: class="fragment" data-fragment-index="2" -->
<img src="https://hackmd.io/_uploads/B1xbOUhYh.png" alt="parallel repetition fails" width="600" style="margin-bottom: -30px; margin-top: 0px"><!-- .element: class="fragment" data-fragment-index="2" -->
----
## "facts" about $\text{QMA}^+$, $\text{QMA}^+(2)$
**Upper bounds** (better than $\text{NEXP}$):
Using a semidefinite program **fails**.
<br/>
*Reason*: <!-- .element: class="fragment" data-fragment-index="1" --> Copositive programming [is hard!](https://ti.inf.ethz.ch/ew/Lehre/ApproxSDP09/notes/copositive.pdf)
Optimizing $\max_{x \ge 0} x^\dagger A x$ can compute independence numbers of graphs, etc.<!-- .element: class="fragment" data-fragment-index="1" -->
----
## How powerful is the ($^+$)?
Every state $|\psi \rangle$ has $\frac{1}{4}$ overlap with some state with non-negative amplitudes.
<br/>
$\implies$ $\exists$ constants $1 > c' > s' > 0$ s.t.
$\text{QMA}^+_{c',s'} = \text{QMA}$ and $\text{QMA}^+(2)_{c',s'} = \text{QMA}(2)$. <!-- .element: class="fragment" data-fragment-index="1" -->
----
## [[JW23]](https://dl.acm.org/doi/abs/10.1145/3564246.3585248): On $\text{QMA}^+(2)$
$\exists$ *other* constants $1 > c > s > 0$, s.t.
$\text{QMA}^+(2)_{c,s} = \text{NEXP}$.
<br/>
New way to understand $\text{QMA}(2)$:
$\text{QMA}^+(2)$ gap amplification $\implies$ $\text{QMA}(2) = \text{NEXP}$!<!-- .element: class="fragment" data-fragment-index="1" -->
----
## Our work: On $\text{QMA}^+$
$\exists$ *other* constants $1 > c > s > 0$, s.t.
$\text{QMA}^+_{c,s} = \text{NEXP}$!
<img src="https://hackmd.io/_uploads/ryUAU0quh.png" alt="arxiv figure 2" style="margin-bottom: -30px; margin-top: 0px"><!-- .element: class="fragment" data-fragment-index="1" -->
($\frac{c}{s}$ interpolates from $\text{QMA}$ to $\text{NEXP}$)
<!-- .element: class="fragment" data-fragment-index="1" -->
**NO** gap amplification of $\text{QMA}^+$!
<!-- .element: class="fragment" data-fragment-index="1" -->
----
## Interpreting these results
<img src="https://hackmd.io/_uploads/r19m8Cqd3.png" alt="arxiv figure 1" width="600">
"*Perhaps the power lies in the $^+$, not the $(2)$...*"
<!-- .element: class="fragment" data-fragment-index="1" -->
Any technique to amplify the promise gap in $\text{QMA}^+(2)$
must **fail** for $\text{QMA}^+$.
<!-- .element: class="fragment" data-fragment-index="2" -->
---
## Outline
1. <span style="color: gray">An introduction to $\text{QMA}^+$</span>
2. **Proof outline**
---
## Outline
1. <span style="color: gray">An introduction to $\text{QMA}^+$</span>
2. <span style="color: gray">Proof outline:</span>
* **$\text{NP} \subseteq \text{QMA}^+$ with $O(\log n)$-qubit proof**
* <span style="color: gray">Scaling up to $\text{NEXP} \subseteq \text{QMA}^+$</span>
----
## Choosing a $\text{NP}$-hard problem
**Input**: CSP instance ($n$ variables, bounded alphabet $\Sigma$,
$q$-uniform constraints $\{\mathcal{C}_1, \dots, \mathcal{C}_R\}$)
<!-- .element: class="fragment" data-fragment-index="1" -->
**Output**: Is instance fully satisfiable (for some $x \in \Sigma^n$)?
<!-- .element: class="fragment" data-fragment-index="1" -->
PCP Theorem: $\text{NP}$-hard for $q = O(1)$, with completeness $c=1$ and soundness $s = \frac{1}{2}$ (i.e. *constant* gap).
<!-- .element: class="fragment" data-fragment-index="2" -->
<br/>
*Plan*: Solve this in $\text{QMA}^+$ with $O(\log n)$-sized proof.
<!-- .element: class="fragment" data-fragment-index="3" -->
----
## Amplitude and interference
<img src="https://hackmd.io/_uploads/BkD0TT5_h.png" alt="interference image" width="600">
<span style="font-size: 6px; float: right">
edited from <a href="https://upload.wikimedia.org/wikipedia/commons/8/8a/Interference_of_two_waves.png">Wikipedia</a>
</span>
Intuition: **non-negative amplitudes** "take the interference" out of $|\psi\rangle$ (they don't "cancel out"!)
<!-- .element: class="fragment" data-fragment-index="1" -->
----
## The power of PLUS ($^+$)
Goal: *require* Merlin to send a certain type of state.
<br/>
**Big idea of** [[JW23]](https://dl.acm.org/doi/abs/10.1145/3564246.3585248): $\langle \psi |+\rangle \propto \||\psi\rangle\|_1$.
<!-- .element: class="fragment" data-fragment-index="1" -->
($\Pi_+ := |+\rangle \langle +|$ accepts $|\psi\rangle$ according to its $\ell_1$ norm)
<!-- .element: class="fragment" data-fragment-index="1" -->
<br/>
This is the **only use** of the ($^+$) assumption in both papers.
<!-- .element: class="fragment" data-fragment-index="2" -->
----
## [[JW23]](https://dl.acm.org/doi/abs/10.1145/3564246.3585248)'s use of ($^+$)
1. Notice that $\text{QMA}^+(2) = \text{QMA}^+(k)$ by [[HM10]](https://arxiv.org/abs/1001.0017)
(so we can assume many copies of $|\psi\rangle$). <!-- .element: class="fragment" data-fragment-index="1" -->
2. Project $\Pi_+ |\psi\rangle$ on each copy; count the fraction that accept. (This *estimates* the $\ell_1$ norm of $|\psi\rangle$) <!-- .element: class="fragment" data-fragment-index="2" -->
$\longrightarrow$ check closeness to states of a *target* $\ell_1$ norm.
<!-- .element: class="fragment" data-fragment-index="3" -->
----
## Our use of ($^+$)
Consider two registers:
*question* ($\log n$ qubits) and *answer* ($O(1)$ qubits)
We choose one of two tests:<!-- .element: class="fragment" data-fragment-index="1" -->
1. $\Pi_+ \otimes \Pi_+$: (dense as possible)
2. $\mathbb{I} \otimes (\mathbb{I} - \Pi_+)$
<!-- .element: class="fragment" data-fragment-index="1" -->
States with **non-negative amplitudes** can't perfectly pass Test 2. The best have *one answer per question*.
<!-- .element: class="fragment" data-fragment-index="2" -->
$\longrightarrow$ check closeness to states of a *rigid* form:
<!-- .element: class="fragment" data-fragment-index="3" -->
$\frac{1}{\sqrt{n}}\sum_{j=1}^{n} |j \rangle |f(j) \rangle$
<!-- .element: class="fragment" data-fragment-index="3" -->
----
## Our use of ($^+$)
<img src="https://hackmd.io/_uploads/ryXkBKNF2.png" alt="success rate of tests" style="margin-top: -20px; margin-bottom: -30px" width="500">
<span style="font-size: 6px; float: right">
concept: Bryan O'Gorman
</span>
* Tests are orthogonal, so sum of success rates $\le 1$.
* Non-negative amplitude states live in green <span style="font-size:0.5em">🟩</span> region.
* *Rigid* states at the circled <span style="font-size:0.5em">⚪</span> point.
----
## How can we use this power?
*questions* $\to$ constraints
*answers* $\to$ assignments of associated variables
In completeness, $\exists$ satisfying assignment $f: [R] \to \Sigma^q$ and proof $|\psi\rangle := \frac{1}{\sqrt{R}}\sum_{j=1}^{R} |j \rangle |f(j) \rangle$.
<!-- .element: class="fragment" data-fragment-index="1" -->
With some probability, we test for this *rigid* form.
Otherwise, we check the *constraints* $\{\mathcal{C}_j\}$.
<!-- .element: class="fragment" data-fragment-index="2" -->
----
## Testing the constraints
For *rigid* states, checking the constraints is easy:
*measure in computational basis, and test $\mathcal{C}_j(f(j))$*.
<br/>
But Merlin can cheat: sending different values for the same variable depending on the constraint.
<!-- .element: class="fragment" data-fragment-index="1" -->
So (with some probability), need to check for *consistency*.
<!-- .element: class="fragment" data-fragment-index="1" -->
----
## Checking "consistency"
Goal: Construct unitaries $\{U_1, \dots, U_d\}$ such that:
* Honest: $|\psi\rangle = U_k |\psi \rangle$ for all $k$
* Cheating: $|\psi\rangle$ "far" from $U_k |\psi \rangle$ for some $k$
Then, the consistency protocol would:<!-- .element: class="fragment" data-fragment-index="1" -->
1. Choose uniform $k \in \{1, \dots, d\}$
2. Run "Hadamard test" on $(|\psi\rangle, U_k |\psi\rangle)$
<!-- .element: class="fragment" data-fragment-index="1" -->
<img src="https://hackmd.io/_uploads/rJUajGWFn.png" alt="Hadamard test image" width="600">
<!-- .element: class="fragment" data-fragment-index="2" -->
<span style="font-size: 6px; float: right">
source: <a href="https://upload.wikimedia.org/wikipedia/commons/f/f2/Hadamard_test_measure_real.png">Victory Omole</a>
</span><!-- .element: class="fragment" data-fragment-index="2" -->
----
## The "consistency" unitaries
We build the graph $G$ using a step from [[Dinur07]](https://dl.acm.org/doi/abs/10.1145/1236457.1236459):
1. Turn each variable $i \in [n]$ into a *cluster* of vertices.
(One vertex <span style="font-size:0.5em">🟠</span> per constraint <span style="font-size:0.5em">◻️</span> involving $i$.) <!-- .element: class="fragment" data-fragment-index="1" -->
2. Add a $d$-regular *expander* graph <span style="font-size:0.5em">⚝</span> within each cluster. <!-- .element: class="fragment" data-fragment-index="2" -->
Illustration for one variable <span style="font-size:0.5em">⚫</span> and $d = 2$: <!-- .element: class="fragment" data-fragment-index="3" -->
![dinur preprocessing graphic](https://hackmd.io/_uploads/rkCw_97F2.png)<!-- .element: class="fragment" data-fragment-index="3" -->
$G$ is the *union* of all expander graphs ($R \cdot q$ vertices).
<!-- .element: class="fragment" data-fragment-index="4" -->
----
## The "consistency" unitaries
Recall that a *rigid* state is of the form $|\psi\rangle := \frac{1}{\sqrt{R}}\sum_{j=1}^{R} |j \rangle |f(j) \rangle$.
It is convenient to separate the variable assignments: $|\phi\rangle := \frac{1}{\sqrt{R\cdot q}}\sum_{j=1}^{R} \sum_{\iota=1}^q |j,\iota \rangle |f(j)[\iota] \rangle$.
(Then all vertices of $G$ are in superposition!)
<!-- .element: class="fragment" data-fragment-index="1" -->
<br/>
The map $|\psi\rangle \mapsto |\phi\rangle$ is efficient; see paper for details.
<!-- .element: class="fragment" data-fragment-index="2" -->
----
## The "consistency" unitaries
We can always decompose a $d$-regular graph into $d$ permutations $\{\pi_1, \dots, \pi_d\}$.
<img src="https://hackmd.io/_uploads/ryBVNU-tn.png" alt="Hadamard test image" width="400">
<!-- .element: class="fragment" data-fragment-index="1" -->
For $k \in [d]$, let $U_k: |j, \iota\rangle |value\rangle \mapsto |\pi_k(j,\iota) \rangle |value\rangle$ for each constraint $j \in [R]$ and variable index $\iota \in [q]$.
<!-- .element: class="fragment" data-fragment-index="2" -->
Honest assignment $\implies$ $|\phi\rangle = U_k |\phi \rangle$ for all $k$!
<!-- .element: class="fragment" data-fragment-index="3" -->
---
## Outline
1. <span style="color: gray">An introduction to $\text{QMA}^+$</span>
2. <span style="color: gray">Proof outline:</span>
* <span style="color: gray">$\text{NP} \subseteq \text{QMA}^+$ with $O(\log n)$-qubit proof</span>
* **Scaling up to $\text{NEXP} \subseteq \text{QMA}^+$**
----
## A $\text{NEXP}$-hard problem
**Input**: *Succinct* <span style="color: gray">CSP instance</span> ($N := 2^n$ variables, <span style="color: gray">bounded alphabet $\Sigma$, $q$-uniform constraints $\{\mathcal{C}_1, \dots, \mathcal{C}_R\}$)</span>
<!-- .element: class="fragment" data-fragment-index="1" -->
<span style="color: gray">**Output**: Is instance fully satisfiable (for some</span> $x \in \Sigma^{2^n}$<span style="color: gray">)?</span>
<!-- .element: class="fragment" data-fragment-index="1" -->
PCP Theorem: $\text{NEXP}$-hard <span style="color: gray">for $q = O(1)$, completeness $c=1$ and soundness $s = \frac{1}{2}$ (i.e. *constant* gap).</span>
<!-- .element: class="fragment" data-fragment-index="2" -->
<br/>
*Plan*: Solve this in $\text{QMA}^+$ with $O(\text{poly}(n))$-sized proof.
<!-- .element: class="fragment" data-fragment-index="3" -->
----
## The $\text{NP}$ protocol *ALMOST* works
Arthur's protocol needs to be *efficient*.
Only issue: how to do "consistency" test?
* expanders are exponentially large
* could be exponentially many expanders
* adjacency lists could be exponentially large
<!-- .element: class="fragment" data-fragment-index="1" -->
----
## Solutions ([[JW23]](https://dl.acm.org/doi/abs/10.1145/3564246.3585248))
* <span style="color: gray">expanders are exponentially large</span>
*Doubly explicit* expander constructions, to build the expanders and decompose them in $\text{polylog}(N)$ time. <!-- .element: class="fragment" data-fragment-index="1" -->
* <span style="color: gray">could be exponentially many expanders</span>
Use a *$O(1)$-strongly uniform* PCP. <!-- .element: class="fragment" data-fragment-index="2" -->
* <span style="color: gray">adjacency lists could be exponentially large</span>
Use a *$\text{polylog}(N)$-doubly explicit* PCP. <!-- .element: class="fragment" data-fragment-index="3" -->
Everything else works after making these adjustments! :sunglasses:
<!-- .element: class="fragment" data-fragment-index="4" -->
---
## Conclusions
*Promise-symmetric* classes can be very powerful.
But the promise gap *really matters*: $\text{QMA}^+_{c,s}$ interpolates from $\text{QMA}$ to $\text{NEXP}$ for **constant** $c,s$.
<img src="https://hackmd.io/_uploads/ryUAU0quh.png" alt="arxiv figure 2" style="margin-bottom: -30px">
<!-- .element: class="fragment" data-fragment-index="1" -->
($x$-axis: $\frac{c}{s}$)
<!-- .element: class="fragment" data-fragment-index="1" -->
**Is there a phase transition in constants?**
<!-- .element: class="fragment" data-fragment-index="1" -->
----
## Conclusions
Suppose you try to prove $\text{QMA}(2) = \text{NEXP}$ by showing $\text{QMA}^+(2)$ promise gap amplification.
Then the amplification technique crucially involves *unentanglement*, since it will **fail** for $\text{QMA}^+$.
<!-- .element: class="fragment" data-fragment-index="2" -->
These techniques may be much more difficult to find.
<!-- .element: class="fragment" data-fragment-index="2" -->
**What does $\text{QMA}^+(2)$ have that $\text{QMA}^+$ doesn't?**
<!-- .element: class="fragment" data-fragment-index="3" -->
---
## Thank you
<br/>
Kunal Marwaha
[https://kunalmarwaha.com/about](https://kunalmarwaha.com/about)
kmarw@uchicago.edu
<p style="font-size: 10px; width: 60%; margin: auto">
This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1746045.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
</p>
{"title":"QMA_plus talk","slideOptions":"{\"transition\":\"none\",\"theme\":\"white\",\"transitionSpeed\":\"fast\"}","contributors":"[{\"id\":\"191b4634-b49c-469d-ad81-7c870e80e98b\",\"add\":3586,\"del\":3107}]"}