Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> Hello, Jessica did you understand how to find the equation for the tangent line to the graph of the function 5x^2+10x+20 at the point x=5, and find the formula for the derivative of a function, using the limit-based definition of the derivative? </div></div> <div><div class="alert blue"> No, I did not understand how to find the tangent line to the graph for the function 5x^2-10x+20 at the point x=5, and I was hoping that you understood? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Use the formula for determining the limit as h approaches zero, for the equation 5x^2+10x+20 for determining the tangent line which is: $f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}$ $f'(x)=\lim_{h \to 0}\frac{[5(x+h)^2+10(x+h)-20][5x^2+10x+20]}{h}$ $f'(x)=\lim_{h \to 0}\frac{5(x^2+2xh+h^2)+10(x+h)+20-(5x^2+10x+20)}{h}$ $f'(x)=\lim_{h \to 0}\frac{(5x^2+10xh+5h^2+10x+10h-5x^2-10x+20)}{h}$ $f'(x)=\lim_{h \to 0}\frac{(10xh+5h^2+10h+20)}{h}$ $f'(x)=\lim_{h \to 0}\frac{(10xh+5h+30)}{h}$ $f'(x)=\lim_{h \to 0}{10x+5h+30}$ At this point you take your limit as it approaches zero. $f'(x)=10x+5(0)+30$ $f'(x)=10x+30$ </div></div> <div><img class="left"/><div class="alert gray"> Next, you nee to use the tangent line approximation formula which is l(x)=f(a)+f'(a)(x-a) and plug in the values needed to find your tangent line equation. </div></div> <div><div class="alert blue"> Can you refresh my memory on how to plug in the appropiate values to find my tangent line? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> $l(x)=f(a)+f'(a)(x-a)$ $l(x)=f(5)+f'(5)(x-5)$ $l(x)=(5x^2+10x+20)+(10x-10)(x-5)$ And now you can plug-in any value near x=5 to find a linear approximation of that value. </div></div> <div><div class="alert blue"> Wow, you really simplified the processes for me. I am so glad that we are study buddies. </div><img class="right"/></div><div class="alert gray"> No problem and i'll see you in class. </div></div> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.