# Controllers ### Overal Objective: $$ \sum_{t=1}^T r_t^\top \Sigma_t u - \phi^\top \left(\tau - \sum_{t=1}^T W\Sigma_t e \right)_+ $$ <hr /> ### Oracle: $$ \sum_{t=1}^T r_t^\top \Sigma_t u - \phi^\top \left(\tau - \sum_{t=1}^T W\Sigma_t e \right)_+ $$ <hr /> ### Baseline Controller - BPC: \begin{align*} \Sigma_t = \arg\max_\Sigma & & r_t^\top \Sigma u \\ \text{s.t.} & & W \Sigma e + s_{t-1} \geq \frac{t}{T} \tau \\ \end{align*} <span style="color:red"> \begin{align*} \Sigma_t = \arg\max_\Sigma & & r_t^\top \Sigma u - \mathbb{1}^\top \left(\frac{t}{T}\tau - [W\Sigma e + s_{t-1}] \right)_+ \\ \end{align*} </span> <span style="color:blue"> \begin{align*} \Sigma_t = \arg\max_\Sigma & & [r_t^\top \Sigma u - \mathbb{1} \kappa] \\ \text{s.t.} & & \kappa \geq \frac{t}{T} \tau - [ W \Sigma e + s_{t-1}] \\ & & \kappa \geq 0 ~\text{and}~\kappa \in \mathbb{R}^{k \times 1}~\text{and}~ \mathbb{1} \in \mathbb{R}^{k \times 1} \end{align*} </span> <hr /> ### Baseline Controller - BPC-$\phi$: <span style="color:red"> \begin{align*} \Sigma_t = \arg\max_\Sigma & & r_t^\top \Sigma u - \phi^\top \left(\frac{t}{T}\tau - [ W\Sigma e +s_{t-1}] \right)_+ \\ \end{align*} </span> <span style="color:blue"> \begin{aligned} \Sigma_t = \arg\max_\Sigma & & \left[ r_t^\top \Sigma e - \phi \kappa \right]\\ \text{s.t.} & & \kappa \geq \frac{t}{T} \tau - [ W\Sigma e + s_{t-1}]\\ & & \kappa \geq 0 ~\text{and}~\kappa \in \mathbb{R}^{k \times 1}\\ \end{aligned} </span> <hr /> ### Baseline - BPC-$\frac{t}{T}\phi$: <span style="color:red"> \begin{align*} \Sigma_t = \arg\max_\Sigma & & r_t^\top \Sigma u - \left(\frac{t}{T} \phi\right)^\top \left(\frac{t}{T}\tau - [ W\Sigma e +s_{t-1}] \right)_+ \\ \end{align*} </span> <span style="color:blue"> \begin{aligned} \Sigma_t = \arg\max_\Sigma & & \left[ r_t^\top \Sigma e - \left(\frac{t}{T} \phi\right)^\top \kappa \right]\\ \text{s.t.} & & \kappa \geq \frac{t}{T} \tau - [ W\Sigma e + s_{t-1}]\\ & & \kappa \geq 0 ~\text{and}~\kappa \in \mathbb{R}^{k \times 1}\\ \end{aligned} </span> <hr /> ### Cost-Aware Reactive-Controller: #### Objective: $$ \min_{0\leq \lambda\leq \phi} \frac{1}{T}\sum_{t=1}^T u(a_t|x_t) - \lambda^T \left(\frac{1}{T}\tau - \frac{1}{T}\sum_{t=1}^T c(a_t|x_t)\right), $$ #### Iterative Objective: $$ \Sigma_t = \arg\max_\Sigma r_t^\top \Sigma u + (\lambda_{t-1})^\top W\Sigma e $$ $$\lambda_t =\color{red}{\Gamma_{[0,\phi]}} \left[ \lambda_{t-1} + \gamma \left(\frac{1}{T}\tau - W\Sigma_t e \right) \right], $$ </span> <hr \> <!-- ### Cost-Aware Predictive Controller-$\phi$ #### Objective: $$ \Sigma_t = \arg\max_\Sigma r_t^\top \Sigma_t u - \phi^T \left(\tau - \left[s_{t-1} + W\Sigma_t e + C(A_t|C_t) \right]\right)_+ $$ $$ \frac{1}{T}\sum_{t=1}^T u(a_t|x_t) - \phi^\top \Big(\tau - \left[s_{t-1} + c(a_t|x_t) + C(A_t|C_t)\right]\Big)_+, $$ #### Multi-forecast Iterative Solution: $$ \Sigma_t = \arg\max_\Sigma~ r_t^\top \Sigma u - \frac{1}{B}\sum_{b=1}^B \phi^\top \left(\tau - [s_{t-1} +W\Sigma e + \hat{C}_t^b] \right)_+ $$ <hr \> --> ### Cost-Aware Predictive Controller #### Objective: <!-- $$ \Sigma_t = \arg\max_\Sigma r_t^\top \Sigma_t u - \phi^T \left(\tau - \left[s_{t-1} + W\Sigma_t e + C(A_t|C_t) \right]\right)_+ $$ --> $$ \min_{0\leq \lambda\leq \phi} \frac{1}{T}\sum_{t=1}^T u(a_t|x_t) - \lambda^\top \Big(\tau - \left[s_{t-1} + c(a_t|x_t) + C(A_t|C_t)\right]\Big)_+, $$ #### [A] Offline-Objective: <!-- <span style="color:red"> \begin{aligned} \widehat{\boldsymbol{\Sigma}} = \arg\max_{(\Sigma^1, \dots, \Sigma^b) \in \Pi} \Big[ \frac{T}{|N|} \sum_{n=1}^{|N|} \left( z^i_{n,j} \right)r_n^\top \Sigma^n u - \phi^\top \frac{1}{|B|}\sum_{i=1}^{|B|} \Big(\tau - \sum_{j=1}^{T} \sum_{n=1}^{|N|} \left( z^i_{n,j} \right) \Sigma^n e \Big)_+ \Big]\\ \end{aligned} </span> --> \begin{aligned} \widehat{\boldsymbol{\Sigma}} = \arg\max_{(\Sigma^1, \dots, \Sigma^b) \in \Pi} \Big[ \frac{1}{|B|}\sum_{i=1}^{|B|} \sum_{j=1}^{T} \sum_{n=1}^{|N|} \left( z^i_{n,j} \right)r_n^\top \Sigma^n u - \phi^\top \frac{1}{|B|}\sum_{i=1}^{|B|} \Big(\tau - \sum_{j=1}^{T} \sum_{n=1}^{|N|} \left( z^i_{n,j} \right) \Sigma^n e \Big)_+ \Big]\\ \end{aligned} <!-- \begin{aligned} \widehat{\boldsymbol{\Sigma}} = \arg\max_{(\Sigma^1, \dots, \Sigma^b) \in \Pi} \Big[ \cdots - \phi^\top \frac{1}{|B|}\sum_{i=1}^{|B|} \Big(\tau - \sum_{j=1}^{T} \sum_{n=1}^{|N|} \left( z^i_{n,j} \right) \Sigma^n e \Big)_+ \Big]\\ \end{aligned} --> #### [B] Offline-Objective: \begin{aligned} \widehat{\boldsymbol{\Sigma}} = \arg\max_{(\Sigma^1, \dots, \Sigma^b) \in \Pi} \Big[ \frac{1}{|B|}\sum_{i=1}^{|B|} \sum_{j=1}^{T} \sum_{n=1}^{|N|} \left( z^i_{n,j} \right)r_n^\top \Sigma^j u - \phi^\top \frac{1}{|B|}\sum_{i=1}^{|B|} \Big(\tau - \sum_{j=1}^{T} \sum_{n=1}^{|N|} \left( z^i_{n,j} \right) \Sigma^j e \Big)_+ \Big]\\ \end{aligned} <!-- \begin{aligned} \widehat{\boldsymbol{\Sigma}} = \arg\max_{(\Sigma^1, \dots, \Sigma^b) \in \Pi} \Big[ \cdots - \phi^\top \frac{1}{|B|}\sum_{i=1}^{|B|} \Big(\tau - \sum_{j=1}^{T} \sum_{n=1}^{|N|} \left( z^i_{n,j} \right) \Sigma^j e \Big)_+ \Big]\\ \end{aligned} --> #### Multi-forecast Iterative Solution: <!-- $$ \Sigma_t = \arg\max_\Sigma~ r_t^\top \Sigma u - \frac{1}{B}\sum_{b=1}^B \left(\lambda^b_{t-1} \right)^\top \left(\tau - [s_{t-1} + W\Sigma e + \hat{C}_t^b ]\right)_+ $$ --> $$ \Sigma_t = \arg\max_\Sigma~ r_t^\top \Sigma u - \frac{1}{B}\sum_{b=1}^B \left(\lambda^b_{t-1} \right)^\top W\Sigma e $$ $$ \lambda_t^b = \Gamma_{[0,\phi]} \left[ \lambda_{t-1}^b + \gamma \left(\tau - [s_{t-1} + c(a_t|x_t) + \hat{C}_t^b] \right) \right],~~b=1,\dots,B. $$