# Topic 1: Systems of Equations, Gaussian Elimination ###### tags: `345` ## Quiz 1 (Thursday 09/13) :::info [Previous Quiz 1 with solutions for study.](https://ketchers.github.io/Teaching/345/Topic%201/Quiz_1_Ground__091622_soln.pdf) :::warning [Solutions](https://ketchers.github.io/Teaching/345/Topic%201/Quiz1_soln.pdf) For now I have not included the *reasoning* for the T/F. This is in case I decide to let you improve your score by submitting your own reasoning. ::: ## Homework 1 (Due Sunday 09/15) :::info * 1.1: 8, 9 (a-c) * 1.2: 5 (c, d, e) , 8, 11, 22 (b,c) * 1.3: 6, 7, 13, 16 * 1.4: 8, 10, 22, 23, 27, 30, 33 * 1.5: 8 (b,d), 19, 28, 32 :::warning [Solutions](https://ketchers.github.io/Teaching/345/Topic%201/Homework_1_Partial_Solutions.pdf) ::: ### Brief intro to vectors and their operations. Here is a [good video](https://youtu.be/fNk_zzaMoSs) introduction from the [Linear Algebra series](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab) at [3Blue1Brown](https://www.youtube.com/@3blue1brown). Here is a [Geogebra app](https://www.geogebra.org/calculator/wadahkuc) for playing with scalar multiplication and addition for vectors in 2D. Here is a similar [Geogebra app](https://www.geogebra.org/calculator/nadgujjn) for playing with the same operations in 3d. ### Quick introduction to matrix and vector notation An ***$m\times n$-matrix*** is just a 2-dimensional array of numbers (***scalars***) with $m$ rows and $n$ columns. The $(i,j)$ entry of an $m\times n$-matrix $A$ will be denoted $A_{i,j}$ or sometimes $a_{i,j}$ (context). We often view matrices via columns or rows. **Example** $$ \begin{bmatrix} 1&2&3\\4&5&6 \end{bmatrix}= \begin{bmatrix} \begin{bmatrix}1\\4\end{bmatrix}& \begin{bmatrix}2\\5\end{bmatrix}& \begin{bmatrix}3\\6\end{bmatrix} \end{bmatrix}= \begin{bmatrix} \begin{bmatrix}1&2&3\end{bmatrix}\\ \begin{bmatrix}4&5&6\end{bmatrix} \end{bmatrix} $$ We will officially say that vectors in $\mathbb R^n$ are $n\times 1$ matrices (column vectors). So an $m\times n$-matrix can be thought of as $n$ (column vectors) from $\mathbb R^m$. The rows might also naturally be considered as vectors (row vectors), so an $m\times n$ matrix might also be viewed as $m$ row vectors from $\mathbb R^n$. We won't use this often, but the $i$^th^ row vector of $A$ might be denoted $A_{i,*}$ while the $j$^th^ column vector would be $A_{*,j}$. We will define matrix multiplication in a number of ways by dividing one or both matrices into columns or rows and each has a different intuitive interpretation. One we need now is the product of a matrix and a vector: $$ \begin{align} A\mathbf x &=\begin{bmatrix}\mathbf a_1&\mathbf a_2&\cdots&\mathbf a_n\end{bmatrix} \begin{bmatrix}x_1\\x_2\\\vdots\\ x_n\end{bmatrix}\\ &=x_1\mathbf a_1+x_2\mathbf a_2+\cdots+x_n\mathbf a_n=\sum_{i=1}^nx_i\mathbf a_i\in\mathbb R^m \end{align} $$ **Example** $$ \begin{align} \begin{bmatrix} 1&2&3\\4&5&6 \end{bmatrix} \begin{bmatrix}7\\8\\9\end{bmatrix}&= \begin{bmatrix} \begin{bmatrix}1\\4\end{bmatrix}& \begin{bmatrix}2\\5\end{bmatrix}& \begin{bmatrix}3\\6\end{bmatrix} \end{bmatrix}\begin{bmatrix}7\\8\\9\end{bmatrix}\\ &=7\begin{bmatrix}1\\4\end{bmatrix}+ 8\begin{bmatrix}2\\5\end{bmatrix}+ 9\begin{bmatrix}3\\6\end{bmatrix}\\ &=\begin{bmatrix}7\\28\end{bmatrix}+ \begin{bmatrix}16\\40\end{bmatrix}+ \begin{bmatrix}27\\54\end{bmatrix}\\ &=\begin{bmatrix}50\\122\end{bmatrix} \end{align} $$ We now apply this to equations of the form $A\mathbf x=\mathbf b$. ### Two ways to interpret/visualize solving systems. Here is a [great video from Zach Star](https://youtu.be/4csuTO7UTMo) showing the two different geometric interpretations of $Ax=b$. I have made two Geogebra apps that represent the two points of view: The system I consider is: $$ \begin{bmatrix} 3&2&1\\4&-2&-5\\1&2&-3 \end{bmatrix} \begin{bmatrix} x\\y\\z \end{bmatrix}= \begin{bmatrix} 6\\-3\\0 \end{bmatrix} $$ * [Solving the vector equation](https://www.geogebra.org/3d/nadgujjn) $$ \begin{bmatrix} 3\\4\\1 \end{bmatrix}x+ \begin{bmatrix} 2\\-2\\2 \end{bmatrix}y+ \begin{bmatrix} 1\\-5\\-3 \end{bmatrix}z= \begin{bmatrix} 6\\-3\\0 \end{bmatrix} $$ * [Solving for the intersection of planes](https://www.geogebra.org/3d/hyh58anv) $$ \begin{align} 3x+2y+\hphantom{5}z&=6\\ 4x-2y-5z&=-3\\ x+2y-3z&=0 \end{align} $$ [Here is a 2D version](https://www.geogebra.org/calculator/dpejuvez) where both interpretations are presented together. The system here is $$ \begin{bmatrix} 3&-2\\-2&-1 \end{bmatrix}\begin{bmatrix} x\\y \end{bmatrix}=\begin{bmatrix} b_0\\b_1 \end{bmatrix} $$ or $$ \begin{bmatrix} 3\\-2 \end{bmatrix}x+\begin{bmatrix} -2\\-1 \end{bmatrix}y=\begin{bmatrix} b_0\\b_1 \end{bmatrix} $$ where you get to play with $(b_0,b_1)$. ## [LU and CR decomposition](/xhhDq_45S4aBJ2AmeKfn4Q?view) ## [Matrix Algebra and *LU* decomposition](/j9l_uh9vT0a_lMSAt6HQRA) [TBA]: /DCvTLDbxRBKXK4R5QWsEtQ?view "TBA"