https://www.overleaf.com/learn/latex/Integrals%2C_sums_and_limits https://hackmd.io/@CynthiaChuang/Basic-LaTeX-Commands $a_0 x^0+a_1 x^1+a_2 x^2+...$ $\sum_{n=0}^{\infty} a_n x^n$ $\sum_{n=0}^{\infty} a_n x^n = a_0 x^0+a_1 x^1+a_2 x^2+...$ $\sum_{n=0}^{\infty} a_n x^n =A(x)$ $\sum_{n=0}^{\infty} a(n) x^n$ $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a(n) x^n =A(x)$ $a(n) \rightarrow A(x)$ $1 \rightarrow \frac{1}{1-x}$ $x^0+x^1+x^2+...$ $\frac{1}{n!} \rightarrow e^x$ $\frac{1}{0!}x^0+\frac{1}{1!}x^1+\frac{1}{2!}x^2+...$ $\sum_{n=0}^{\infty} a(n) x^n =A(x)$ $n = 0, 1 ,2...$ $\int_{0}^{\infty} a(n) x^n \,dn =A(x)$ $0{\le}t<{\infty}$ $\int_{0}^{\infty} a(t) x^t \,dt =A(x)$ $x^t = (e^{ln(x)})^t =e^{tln(x)} = e^{-st}$ $0<x<1$ $ln(x)<0$ $s = -ln(x)$ $s >0$ $\int_{0}^{\infty} a(t) e^{-st} \,dt =A(x)= A(e^{-s})$ $\int_{0}^{\infty} f(t) e^{-st} \,dt =F(s)$ $f(t) \rightarrow F(s)$