# Wielomiany a) $4x^3 - 4x^2 - 15x + 18 = 0$ | -- | 4 | -4 | -15 | 18 | | --- | ---- | ---- | --- | --- | | -2 | 4 | -12 | 9 | 0 | $(x+2)(4x^2 - 12x + 9) = 0$ **I SPOSÓB – WZÓR SKRÓCONEGO MNOŻENIA** $(a-b)^2 = a^2 - 2ab + b^2$ $4x^2 - 12x + 9 = 0$ $(2x -3)^2 = 0$ $2x - 3 = 0$ $2x = 3$ $x = \frac{3}{2}$ **II SPOSÓB – DELTA** $4x^2 - 12x + 9 = 0$ $\Delta = 144 - 4 * 4 * 9 = 0$ $x = \frac{3}{2}$ b) $-3x^3 + 8x^2 + x = 0$ $x(-3x^2 + 8x + 1) = 0$ $\Delta = 64 + 12 = 76$ c) $x^3 + x^2 - 2x - 2 = 0$ $x^2(x + 1) - 2(x + 1) = 0$ $(x+1)(x^2 - 2) = 0$ $(x+1)(x - \sqrt{2})(x + \sqrt{2}) = 0$ $x = -1$ $x = - \sqrt{2}$ $x = \sqrt{2}$ d) $3x + 5x^4 - 3x^5 = 5$ $3x + 5x^4 - 3x^5 - 5 = 0$ $5x^4 - 5 - 3x^5 + 3x = 0$ $5(x^4 - 1) - 3x(x^4 - 1) = 0$ $(x^4 - 1)(5 - 3x) = 0$ $x^4 - 1 = 0$ lub $5 - 3x = 0$ $x^4 = 1$ $x = 1$ lub $x = -1$ lub $x = \frac{5}{3}$ $a^2 - b^2 = (a-b)(a+b)$ $(x^4 - 1) = (x^2 -1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1)$ $(x - 1)(x + 1)(x^2 + 1)(5 - 3x) = 0$ $-(3x - 5)(x - 1)(x + 1)(x^2 + 1) = 0$ PRZYKŁAD INNY $2x^3 - x^2 - 8x + 4 = 0$ dzielimy przez 2 schematem Hornera | --- | 2 | -1 | -8 | 4 | | --- | - | --- | --- | --- | | 2 | 2 | 3 | -2 | 0 | $(2x^2 + 3x - 2)(x-2) = 0$ $\Delta = 9 + 16 = 25$ $\sqrt{\Delta} = \sqrt{25} = 5$