# PV=nTR $$ \newcommand\Nz{N_0} \newcommand\Mz{M_0} \newcommand\V{\nu} \newcommand\Vs{\overline{V^2}} \newcommand\Ek{\overline{E_k}} \newcommand\?{?} \newcommand\?{?} \newcommand\?{?} \newcommand\?{?} \newcommand\?{?} $$ ## 單位表 - $N$ : 粒子數 ($nN_0$) - $\Nz$ : 一莫爾的粒子數 $=6\times10^{23}$ - $n$ : 莫爾 ($\frac{N}{N_0}$)($\frac{M}{M_0}$) - $m$ : 一個氣體粒子重 ($\frac{M}{N}$)($\frac{\V\rho}{N}$)(kg) - $M$ : 氣體重 ($mN$)($\V\rho$)(kg) - $\Mz$ : 分子量重 ($m\Nz$)($\frac{\V\rho}{n}$)(kg) - $\V$ : 體積 ($m^3$) - $k$ : 波差曼常數 $\approx1.38\times10^{-23}$ ($\frac{R}{\Nz}$) - $\rho$ : 密度 ($\frac{M}{\V}$)($\frac{kg}{m^3}$) - $R$ : 理想氣體常數 $\approx8.31$ - $\Ek$ : 平均動能 ($\frac{1}{2}m\overline{V^2}$)($\frac{3}{2}NkT$) - $V$ : 平均動能 ($V_{rme}$) ## PV= $$ NkT=nRT=P\V=\frac{1}{3}Nm\Vs=\frac{2}{3}N\Ek $$ ## Ek= $\Ek=\frac{3}{2}kT$ $N\Ek=\frac{3}{2}NkT$ $N_0\Ek=\frac{3}{2}\Nz kT=\frac{3}{2}RT$ $n\Ek=\frac{3}{2}NkT=\frac{3}{2}nRT$ > (不是直接相等, $n\Ek$是指有$n$莫爾時$\Ek$=?) ## P= $PM_0=\rho RT$ $Pm=\rho kT$ $P=\frac{1}{3}\rho\Vs$ ## V= $$ V=\sqrt{\frac{3kT}{m}}=\sqrt{\frac{3RT}{\Mz}}=\sqrt{\frac{3P\V}{Nm}}=\sqrt{\frac{3P}{\rho}} $$ ## Other $J=\Delta P=m \Delta V=2mV$ $\frac{1}{3}\Vs=V_x^2=V_y^2=V_z^2$ $P\V$的單位是$J$因為$\frac{F}{A}\V=\frac{F}{l^2 }l^3=Fl=J$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up