{%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %}
B112045005 吳愷杰 302-2--d,e,f
##### Exercise 2(d)
判斷 $f: \mathbb{R}^2\rightarrow\mathbb{R}$ 且 $f(x,y) = x^2 + y^2$ 是否線性。
<!-- eng start -->
Let $f: \mathbb{R}^2\rightarrow\mathbb{R}$ be a function defined by $f(x,y) = x^2 + y^2$. Is it linear?
<!-- eng end -->
:::warning
- [x] we got --> we get
- [x] Thus --> Thus,
:::
##### Exercise 2(d) -- answer here:
Because $f(kx,ky) = k^2x^2 + k^2y^2$ and $kf(x,y) = kx^2 + ky^2$, we get $kf(x,y) \neq f(kx,ky)$,
Thus, $f$ is not linear.
##### Exercise 2(e)
判斷 $f: \mathbb{R}^2\rightarrow\mathbb{R}$ 且 $f(x,y) = 3x + 2y$ 是否線性。
<!-- eng start -->
Let $f: \mathbb{R}^2\rightarrow\mathbb{R}$ be a function defined by $f(x,y) = 3x + 2y$. Is it linear?
<!-- eng end -->
:::warning
- [x] It should be a period after $f(x_2, y_2)$.
- [x] that's why --> so
:::
##### Exercise 2(e) -- answer here
Because $kf(x,y) = 3kx + 2ky = f(kx,ky)$ and
$$\begin{align}
f(x_1 + x_2,y_1 + y_2) & = 3(x_1 + x_2) + 2(y_1 + y_2) \\
& = 3x_1 + 3x_2 + 2y_1 + 2y_2 \\
& = f(x_1,y_1) + f(x_2,y_2).
\end{align}
$$
It fulfills the definition, so $f$ is linear.
:::warning
- [x] Because ..., $f$ is not linear.
:::
##### Exercise 2(f)
判斷 $f: \mathbb{R}^2\rightarrow\mathbb{R}$ 且 $f(x,y) = 3x + 2y + 1$ 是否線性。
<!-- eng start -->
Let $f: \mathbb{R}^2\rightarrow\mathbb{R}$ be a function defined by $f(x,y) = 3x + 2y + 1$. Is it linear?
<!-- eng end -->
##### Exercise 2(f) -- answer here:
Beacuse $kf(x,y) = 3kx + 2ky + k \neq f(kx,ky)$, $f$ is not linear.