{%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} B112045005 吳愷杰 302-2--d,e,f ##### Exercise 2(d) 判斷 $f: \mathbb{R}^2\rightarrow\mathbb{R}$ 且 $f(x,y) = x^2 + y^2$ 是否線性。 <!-- eng start --> Let $f: \mathbb{R}^2\rightarrow\mathbb{R}$ be a function defined by $f(x,y) = x^2 + y^2$. Is it linear? <!-- eng end --> :::warning - [x] we got --> we get - [x] Thus --> Thus, ::: ##### Exercise 2(d) -- answer here: Because $f(kx,ky) = k^2x^2 + k^2y^2$ and $kf(x,y) = kx^2 + ky^2$, we get $kf(x,y) \neq f(kx,ky)$, Thus, $f$ is not linear. ##### Exercise 2(e) 判斷 $f: \mathbb{R}^2\rightarrow\mathbb{R}$ 且 $f(x,y) = 3x + 2y$ 是否線性。 <!-- eng start --> Let $f: \mathbb{R}^2\rightarrow\mathbb{R}$ be a function defined by $f(x,y) = 3x + 2y$. Is it linear? <!-- eng end --> :::warning - [x] It should be a period after $f(x_2, y_2)$. - [x] that's why --> so ::: ##### Exercise 2(e) -- answer here Because $kf(x,y) = 3kx + 2ky = f(kx,ky)$ and $$\begin{align} f(x_1 + x_2,y_1 + y_2) & = 3(x_1 + x_2) + 2(y_1 + y_2) \\ & = 3x_1 + 3x_2 + 2y_1 + 2y_2 \\ & = f(x_1,y_1) + f(x_2,y_2). \end{align} $$ It fulfills the definition, so $f$ is linear. :::warning - [x] Because ..., $f$ is not linear. ::: ##### Exercise 2(f) 判斷 $f: \mathbb{R}^2\rightarrow\mathbb{R}$ 且 $f(x,y) = 3x + 2y + 1$ 是否線性。 <!-- eng start --> Let $f: \mathbb{R}^2\rightarrow\mathbb{R}$ be a function defined by $f(x,y) = 3x + 2y + 1$. Is it linear? <!-- eng end --> ##### Exercise 2(f) -- answer here: Beacuse $kf(x,y) = 3kx + 2ky + k \neq f(kx,ky)$, $f$ is not linear.