# Quantum Teleportation ###### tags:`quantum computing` ## Unitary Matrix - $U^*U = UU^* = I\quad(U^* = U^H)$ - $|\lambda_n| = 1$ >$$ \begin{aligned} Ux &= \lambda x \end{aligned} $$ > >$$ \begin{aligned} ||x||^2 = \langle Ux,Ux \rangle &= x^TU^TUx = ||x||^2 \end{aligned} \tag{1} $$ > >$$ \begin{aligned} ||Ux||^2 = ||\lambda x||^2 &= |\lambda|^2||x||^2 \end{aligned} \tag{2} $$ > >$$ \begin{aligned} (1) = (2) \end{aligned} $$ > >$\therefore |\lambda| = 1 \rightarrow$ this means eigenvalue lies on the unit circle of palane, which means $\lambda =a+ib = e^{i\theta}$ - $|det(U)| = 1$ ## Phase Kickback ![PhaseKickBack](https://hackmd.io/_uploads/SkHUVDxMxx.png) Let $\psi$ be a eigenvector of unitary matrix. 以上電路代表 : $$ \begin{aligned} CU(|\psi\rangle\otimes H|0\rangle) = CU(|\psi\rangle\otimes H|+\rangle) \end{aligned} $$ 繼續推倒: $$ \begin{aligned} CU(|\psi\rangle\otimes H|+\rangle) &= CU(|\psi\rangle\otimes (\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle))\\ &= CU(\frac{1}{\sqrt{2}}|\psi\rangle \otimes|0\rangle + \frac{1}{\sqrt{2}}|\psi\rangle \otimes|1\rangle)\\ &= \frac{1}{\sqrt{2}}CU(|\psi\rangle\otimes|0\rangle)+\frac{1}{\sqrt{2}}CU(|\psi\rangle\otimes|1\rangle)\\ &= \frac{1}{\sqrt{2}}|\psi\rangle\otimes|0\rangle+\frac{1}{\sqrt{2}}U|\psi\rangle\otimes|1\rangle\\ &= \frac{1}{\sqrt{2}}|\psi\rangle\otimes|0\rangle+\frac{1}{\sqrt{2}}\lambda|\psi\rangle\otimes|1\rangle\\ &= \frac{1}{\sqrt{2}}|\psi\rangle\otimes|0\rangle+\frac{1}{\sqrt{2}}e^{i\phi}|\psi\rangle\otimes|1\rangle\\ &= |\psi\rangle(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}e^{i\phi}|1\rangle) \end{aligned} $$ 我們可以看到 phase 被踢到 first qubit 的 $|1\rangle$ 上 ## Circuit of Quantum Teleportation ![image](https://hackmd.io/_uploads/Hys16Igzlx.png) - Q1 : 是輸入要傳輸的 $\psi$ signal,由 Alice 傳給 Bob - Q2 : Alice 的專用 channel - Q3 : Bob 的專用 channel ### Fist state $$ \begin{aligned} |\psi_0\rangle &= |\psi\rangle \otimes(\frac{1}{\sqrt{2}}|00\rangle + |11\rangle)\\ &= (\alpha|0\rangle+\beta|1\rangle)\otimes(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle) \\ & = \frac{\alpha}{\sqrt{2}}|000\rangle + \frac{\alpha}{\sqrt{2}}|011\rangle + \frac{\beta}{\sqrt{2}}|100\rangle+\frac{\beta}{\sqrt{2}}|111\rangle \end{aligned} $$ ### Entanglement <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/B1oixuxzlg.png" alt="image"> </div> $$ \begin{aligned} |\psi\rangle &= \alpha|0\rangle + \beta|1\rangle\\ \beta_{00} &= \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle \end{aligned} $$ 我們想證明 $|\psi\rangle$ 和 $\beta_{00}$ entanglement 在一起,像是以下形式 $$ |\psi\rangle\otimes\beta_{00} = \begin{bmatrix} \frac{\alpha}{\sqrt{2}}\\ 0\\ 0\\ \frac{\alpha}{\sqrt{2}}\\ \frac{\beta}{\sqrt{2}}\\ 0\\ 0\\ \frac{\beta}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} a\\ b\\ c\\ d\\ \end{bmatrix} \otimes \begin{bmatrix} e\\ f\\ \end{bmatrix} = \begin{bmatrix} ae\\ af\\ be\\ bf\\ ce\\ cf\\ de\\ df \end{bmatrix} $$ 我們可以得到一下的關係式 $$ \begin{cases} ae = \frac{\alpha}{\sqrt{2}}\\ af = 0\\ be = 0\\ bf = \frac{\alpha}{\sqrt{2}}\\ ce = \frac{\beta}{\sqrt{2}}\\ cf = 0\\ de = 0\\ df = \frac{\beta}{\sqrt{2}} \end{cases} \Rightarrow \begin{cases} a\neq0, e\neq0\\ a = 0\space or \space f = 0\\ b = 0\space or \space e =0\\ b \neq0, f\neq 0\\ c \neq0, e\neq0\\ c =0 \space or \space f = 0\\ d =0 \space or \space e=0\\ d \neq 0, f\neq 0 \end{cases} $$ 因為 $(a\neq0, e\neq) \wedge (b\neq0, f\neq 0)$ 但跟 ($a = 0\space or \space f = 0$) 矛盾,所以$|\psi\rangle$ 和 $\beta_{00}$ entanglement。 ### general form - 懶得寫 ### Second state $$ |\psi_1\rangle = \begin{cases} CNOT(Q_1,Q_2) = \alpha|0\rangle\otimes(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle) = \alpha|0\rangle\otimes(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle)\\ CNOT(Q_1,Q_2) = \beta|1\rangle\otimes X(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle) = \beta|1\rangle\otimes(\frac{1}{\sqrt{2}}|10\rangle+\frac{1}{\sqrt{2}}|01\rangle) \end{cases} $$ $$ \begin{aligned} |\psi_1\rangle = (\frac{\alpha}{\sqrt{2}}|000\rangle+\frac{\alpha}{\sqrt{2}}|011\rangle) + (\frac{\beta}{\sqrt{2}}|110\rangle+\frac{\beta}{\sqrt{2}}|101\rangle) \end{aligned} $$ ### Third state $$ \begin{aligned} |\psi_2\rangle &= \alpha H|0\rangle\otimes(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle) + \beta H|1\rangle\otimes(\frac{1}{\sqrt{2}}|10\rangle + \frac{1}{\sqrt{2}}|01\rangle)\\ &= \alpha|+\rangle\otimes(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle) + \beta |-\rangle\otimes(\frac{1}{\sqrt{2}}|10\rangle + \frac{1}{\sqrt{2}}|01\rangle)\\ &= \alpha(\frac{1}{\sqrt{2}}|000\rangle + \frac{1}{\sqrt{2}}|011\rangle + \frac{1}{\sqrt{2}}|100\rangle + \frac{1}{\sqrt{2}}|111\rangle) + \beta(\frac{1}{\sqrt{2}}|010\rangle + \frac{1}{\sqrt{2}}|001\rangle + \frac{1}{\sqrt{2}}|110\rangle + \frac{1}{\sqrt{2}}|101\rangle)\\ &=\frac{1}{2}|00\rangle(\alpha|0\rangle+\beta|1\rangle) + \frac{1}{2}|01\rangle(\alpha|1\rangle+\beta|0\rangle) + \frac{1}{2}|10\rangle(\alpha|0\rangle-\beta|1\rangle) + \frac{1}{2}|11\rangle(\alpha|1\rangle-\beta|0\rangle) \end{aligned} $$ ### Measurement ![image](https://hackmd.io/_uploads/rJlQcdezgx.png) - 當我們觀測到哪一個 state 時,因為特定的 state 會跟特定的 state entanglement 在一起 - 我們就做對應的修正,就可以得到 Alice 傳輸的 $\psi$ ## phase kick back 在哪? :face_with_diagonal_mouth: 當初看完 Quantum Teleportation 時,想說靠北,phase kickback 是用在哪裡 - 首先想說的是當 channel Q2 和 Q3 的 qubit 經過 H 和 CNOT Gate,變成 bell type $I$。 - bell type $I$ 是 CNOT gate 的 eigenvector $$ \begin{aligned} (X \otimes X)\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) &= \frac{1}{\sqrt{2}}(X|0\rangle\otimes X|0\rangle + X|1\rangle\otimes X|1\rangle)\\ &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)\\ &= \lambda\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \end{aligned} $$ - 可以對應到一開始介紹 Phase kick back 的電路。 - 從框框可以看到我們把channel Q1 phasae kickback 到 Q3,只是需要修正。 $$ \begin{aligned} \frac{1}{2}|00\rangle\boxed{(\alpha|0\rangle+\beta|1\rangle)} + \frac{1}{2}|01\rangle\boxed{(\alpha|1\rangle+\beta|0\rangle)} + \frac{1}{2}|10\rangle\boxed{(\alpha|0\rangle-\beta|1\rangle)} + \frac{1}{2}|11\rangle\boxed{(\alpha|1\rangle-\beta|0\rangle)} \end{aligned} $$ ### 求 $X\otimes X$ 的 eigenvalue $$ X\otimes X= \begin{bmatrix} 0&0&0&1 \\ 0&0&1&0 \\ 0&1&0&0 \\ 1&0&0&0 \\ \end{bmatrix} $$ - $det(X-\lambda I) = 0$ $$ A-\lambda I = \begin{vmatrix} -\lambda&0&0&1\\ 0&-\lambda&1&0\\ 0&1&-\lambda&0\\ 1&0&0&-\lambda\\ \end{vmatrix} $$ - X 的 $\lambda = 1(重根), -1(重根)$ ### Bell type 是 $X\otimes X$ 的 eigenvalue - 懶得求 ## Referece - Prof. Pao-Ta Yu. 2025. 量子電腦程式設計概論. 中正大學, Chiayi, Taiwan。