# Survey of Discrete Laplace-Beltrami (LBO) on Mesh ###### tags: `Laplace` ## 1. 簡介 在傳統的$\mathbb{R}^2$空間中,若我們考慮間距固定為h均勻網格,我們可以透過5-points的有限差分法得到$\triangle u$ 的2階逼近(see [LeVeque FDM] P.59): > \begin{split} > \triangle_5 u(p) := \frac{1}{h^2}\Big[\sum_{j \in R_1(p)}u(p_j)-4u(p) \Big]=\triangle u(p)+\frac{1}{4!}(u_{xxxx}+u_{yyyy})h^2 +o(h^2) > \end{split} 我們可以知道 > \begin{split} > \triangle_5 u(p)-\triangle u(p) = O(h^2) > \end{split} 而且可以透9-points的有限差分及特殊的疊帶手法得到4階逼近。(待補) 現在我們想要將曲面的Laplace-Beltrami Operator進行離散化,而同樣地我們必須考慮離散解對於真實解的收斂行為(隨著網格加密)。 ## 2. 曲面$S$上的Laplace-Beltrami Operator(LBO) ### 2-1. 定義 從傳統微分幾何的觀點,我們定義了一個0-form, $u$, 的Laplace-Beltrami Operator如下 > \begin{split} > \triangle_S u := *d*d u = d^* d u > \end{split} 其中$d^*: H^p(\Omega) \rightarrow H^{p-1}(\Omega)$ 是對偶外微分(exterior co-differentiate operator) ### 2-2. Cotan-Formular (see Meyer 2003) > \begin{split} > \triangle_M f(p)&=\frac{1}{A_M(p)}\sum_{j \in R_1(p)}\frac{\cot \alpha_{i,j}+\cot \beta_{i,j}}{2}\big[f(p_j)-f(p)\big] > \end{split} 其中角度...怎麼計算的 *插入圖片 ### 2-3. 熱方程下的LBO (see Belkin et al. 2008 & Xinge Li et al. 2015) 透過曲面上的熱核($H_S^t(x,y)$)及熱方程 > \begin{split} > \begin{cases} > \triangle_S u(x,t)= \frac{\partial}{\partial t}\int_{S}H^t_S(x,y)f(y)dy\\ > u(x,0)=f(x) > \end{cases} > \end{split} 考慮熱核的漸近展開 > \begin{split} > H^t_S(x,y) \sim \frac{1}{4 \pi t}e^{\frac{-d_S(x,y)^2}{4t}} > \end{split} 並定義 > \begin{split} > F^t_S f(x)=\frac{1}{4 \pi t^2}\int_S e^{\frac{-d_S(x,y)^2}{4t}}\big(f(x)-f(y) \big)d \nu (y) > \end{split} ## 3. 均勻網格球面 (see [Xu, 2006]) 這篇論文中,沿用[Meyer 2003]中的contangent formaular表示離散LBO,計算球面上精確的LBO: > \begin{split} > \triangle_S f(p) = (\triangle_S p)^T \nabla f(p) + \triangle f(p) - p^THf(p)p, p \in S > \end{split} 並估計誤差及在均勻網格的條件下討論其收斂性 > \begin{split} > \triangle_M f(p) = \triangle_S f(p) + O(r), \ \ \ as\ r \rightarrow 0. > \end{split} ## 4. 其他可以參考的資料(未讀) 1. D. Liu, G. Xu, Q. Zhang. *A discrete scheme of Laplace-Beltrami operator and its convergence over quadrilateral meshes* Computers and Mathematics with Applications 55 (2008) 1081-1093. ## Reference >1. Randall J. LeVeque. *Finite Difference Methods for Ordinary and Partial Differential Equations* >2. M. Meyer, M. Desbrun, P. Schröder, A. H. Barr. *Discrete Differential-Geometry Operators for Triangulated 2-Manifolds.* Visualization and Mathematics January 2003. >3. M. Belkin, J. Sum, Y. Wang. *Discrete Laplcae Operator on Meshed Surfaces.* Pro ceedings of the twenty-fourth annual symposium on Computational geometry. June 2008 Pages 278-287. >4. Xinge Li, Guoliang Xu, Yonhjie Jessica Zhang. *Localized discrete Laplace-Beltrami operator over triangular mesh.* Computer Aided Geometry Design 39(2015)67-82 >5. Guoliang Xu, *Discrete Laplace-Beltrami Operator on Sphere and Optimal Spherical Triangulations.* International Hournal of Computational Geometry & Applications Vol. 16, No. 01, pp.75-93(2006)