# DaniilGubajdullin # Daniil Gubajdullin, 24.10.2001 ## Task 1 $\begin{equation*} \begin{cases} y''y' = \frac{1}{2}\\ y(1) = (day)\\ y'(1) = (month) \end{cases} \end{equation*}$ $(day) = 24$ $(month) = 10$ $(year) = 2001$ ### Solution: $y''y' = \frac{1}{2}$ - second order nonlinear ordinary differential equation 1. Let $y' = p$, which gives $y'' = p'$, then integrate both sides with respect of x: $\int p'p dx = \int\frac{1}{2} dx$ $~~~~~~~~~\Updownarrow$ $~~~\int p dp = \frac{1}{2}\int dx$ $~~~~~~~~~\Updownarrow$ $~~~~~~~~~\frac{p^2}{2} = \frac{x}{2} + c$, where $\textbf{c}$ - const and $\textbf{c}\in \mathbb{R}$ $~~~~~~~~~\Updownarrow$ $~~~~~~~~~~~p = \pm \sqrt{x+c}$ 2. Substitute back for $y' = p$: $y' = \pm \sqrt{x+c}$ $$a) Subsitute initial condition $y'(1) = (month) = 10$ into $y' = \sqrt{x+c}$: $~~~~10 = \sqrt{c + 1}$ $~~~~~~~~~\Updownarrow$ $~~~~~~~c = 99$ b) Subsitute initial condition $y'(1) = (month) = 10$ into $y' = -\sqrt{x+c}$: $~~~~10 = -\sqrt{1 + c}$ $~~~~$This equation has no solution. 3. Integrate both sides of $y' = \sqrt{x+99}$ with respect to x, $x \in [-99; +\infty)$: $y = \int \sqrt{x+99} dx$ $~~~~~~~~~\Updownarrow$ $y = \frac{2}{3}(x+99)^{\frac{3}{2}} + c$, where $\textbf{c}$ - const and $\textbf{c}\in \mathbb{R}$ Subsitute initial condition $y(1) = (day) = 24$ into $y = \frac{2}{3}(x+99)^{\frac{3}{2}} + c$: $~~~~24 = \frac{2}{3}(100)^{\frac{3}{2}} + c$ $~~~~~~~~~\Updownarrow$ $~~~~~~~c = 24 - \frac{2}{3}10^3$ $~~~~~~~~~\Updownarrow$ $~~~~~~~c = -\frac{1928}{3}$ 4. Substitute $c = -\frac{1928}{3}$ into $y = \frac{2}{3}(x+99)^{\frac{3}{2}} + c$: $y = \frac{2}{3}(x+99)^{\frac{3}{2}} - \frac{1928}{3}$ $~~~~~~~~~\Updownarrow$ $y = \frac{2}{3}((x+99)^{\frac{3}{2}} - 964)$ ## Answer: $$y = \frac{2}{3}((x+99)^{\frac{3}{2}} - 964)~~$$ on $$x \in [-99; +\infty)$$ ## Task 2 $y'' + (month)y' -(day)y = 0$ $(day) = 24$ $(month) = 10$ $(year) = 2001$ ### Solution: $y'' + (month)y' -(day)y = 0$ - second order linear homogeneous ordinary differential equation with constant coefficients; 1. Let $y = e ^ {ax}$, where $a$ - const: $(e ^ {ax})'' + 10 (e ^ {ax})' - 24 (e ^ {ax}) = 0$ $~~~~~~~~~\Updownarrow$ $a^2e ^ {ax} + 10 a e ^ {ax} - 24 e ^ {ax} = 0$ $~~~~~~~~~\Updownarrow$ $(a^2 + 10 a - 24) e ^ {ax} = 0$ $~~~~~~~~~\Updownarrow~~$ Since $e ^ {ax} \ne 0$ for any $a$ $a^2 + 10 a - 24 = 0$ $~~~~~~~~~\Updownarrow$ $(a - 2)(a + 12) = 0$ $~~~~~~~~~\Updownarrow$ $a = 2$ or $a = -12$ $~~~~~~~~~\Updownarrow$ $y_1 = c_1e^{2x};~~y_2 = c_2e^{-12x}$ $\Rightarrow$ $y = y_1 + y_2 = c_1e^{2x} + c_2e^{-12x}$, where $c_1$ and $c_2$ - const and $c_1, c_2 \in \mathbb{R}$ $y = c_1e^{2x} + c_2e^{-12x}$ - the most general solution on $x \in \mathbb{R}$, where $c_1, c_2$ - const and $c_1, c_2 \in \mathbb{R}$ ## Answer: $$y = c_1e^{2x} + c_2e^{-12x}~~$$