# LaTex example ###### tags: `LaTex` Refer to: https://hackmd.io/@sysprog/B1RwlM85Z ### 數學式的開始與結束都是`$` ### ==`$`需緊鄰著數學式== | LaTex Code | Output Result | | :-------- | :--------: | | 下標 `_`<br>`$C_{1}+C_{2}$` | $C_{1}+C_{2}$ | | 上標 `^`<br>`$c_{1}^{2}=a^{2}+b^{2}$` | $c_{1}^{2}=a^{2}+b^{2}$ | | 空白 `\quad `<br>`$C_{1}\quad +\quad C_{2}$` | $C_{1}\quad +\quad C_{2}$ | | 空白 `\qquad `<br>`$C_{1}\qquad +\qquad C_{2}$` | $C_{1}\qquad +\qquad C_{2}$ | | 空白 `\ `<br>`$C_{1}\ +\ C_{2}$` | $C_{1}\ +\ C_{2}$ | | 換行 `\\`<br> `$\dfrac{1}{2}\\ \dfrac{3}{4}$` | $\dfrac{1}{2}\\ \dfrac{3}{4}$ | | 比較 `\neq`,`\leq`, `\geq`<br>`$e^{x^2} \neq {e^x}^2 \quad x \leq y , x \geq y$` | $e^{x^2} \neq {e^x}^2 \quad x \leq y , x \geq y$ | | 平方根 `\sqrt`<br>`$\sqrt{x+y} \quad \sqrt[3]{x^{2}+y}$` | $\sqrt{x+y} \quad \sqrt[3]{x^{2}+y}$ | | 分數 `\frac{}{}`<br> `$\frac{miao}{a+b}$` | $\frac{miao}{a+b}$ | | 絕對值 `\lvert {} \rvert`<br> `$\lvert \frac{e^2}{2}x \rvert$` | $\lvert \frac{e^2}{2}x \rvert$ | | 循環小數 `\overline{AB}`<br> `$0.00\overline{123}$` | $0.00\overline{123}$ | | 向量 `\vec`,`\hat`<br> `$\vec{abc} \quad \hat{def}$` | $\vec{abc} \quad \hat{def}$ | | 希臘字母 ==第一個字母大寫, 可以變成大寫希臘字母==<br> `$\lambda,\pi,\mu,\Phi,\Omega,\alpha, \beta, \gamma,\Gamma, \Delta,\xi,\sigma$` | $\lambda,\pi,\mu,\Phi,\Omega,\alpha, \beta, \gamma,\Gamma, \Delta,\xi,\sigma$ | | 水平線 `\overline`,`\underline`<br> `$\overline{van} \quad \underline{deap \quad dark \quad fantasy}$` | $\overline{van} \quad \underline{deap \quad dark \quad fantasy}$ | | 無窮符號 `\infty`<br> `$\infty$` | $\infty$ | | To `\to`<br> `$\to$` | $\to$ | | multiple x `\times`<br> `$\times$` | $a\times b$ | | 點點點 `\cdot`,`\cdots`,`\vdots`<br>`$\cdot\quad \cdots\quad \vdots$` | $\cdot\quad \cdots\quad \vdots$ | | 水平括號 ` \overbrace`,`\undrebrace`<br>`$\underbrace{j+z+\cdots+m}_{19260708} \quad \overbrace{1+s+\cdots}^{\infty}$` | $\underbrace{j+z+\cdots+m}_{19260708} \quad \overbrace{1+s+\cdots}^{\infty}$ | | 數學符 `\mathbf`,`\mathbb`<br>`$\mathbf{R}\quad \mathbb{R}$` | $\mathbf{R}\quad \mathbb{R}$ | | 度數 `\circ`<br> `$25^\circ$` | $25^\circ$ | | 前綴符號 `\int`,`\sum`,`\prod`<br> `${\int_{0}^{\frac{\pi}{2}}} \quad \sum_{i=1}^{n} \quad \prod_\epsilon$` | ${\int_{0}^{\frac{\pi}{2}}} \quad \sum_{i=1}^{n} \quad \prod_\epsilon$ | | limit `\lim_{N\to\infty}`<br> `$\lim_{N\to\infty}$` | $\lim_{N\to\infty}$ | | limit `\displaystyle\lim_{N\to\infty}`<br> `$\displaystyle\lim_{N\to\infty}$` | $\displaystyle\lim_{N\to\infty}$ | | 存在符號 `\epsilon`<br> `$\epsilon\ \prod_\epsilon$` | $\epsilon\ \prod_\epsilon$ | | ==括號== `\left`,`\right`<br> `$\left( \sum_{0\leq i<n} i^k \right)$` | $\left( \sum_{0\leq i<n} i^k \right)$ | | ==矩陣== `\begin{matrix} & &... \\ & & ... \\ ... end{matrix}`<br> `$\left[\begin{matrix}a&b&\\&c&d\end{matrix}\right]$` | $\left[\begin{matrix}a&b&\\&c&d\end{matrix}\right]$ | --- ``` $f\left(x\right)=\left\{\begin{matrix}\lambda e^{-\lambda x},&x>0,\\0,&x\le0\\\end{matrix}\right.$ ``` $f\left(x\right)=\left\{\begin{matrix}\lambda e^{-\lambda x},&x>0,\\0,&x\le0\\\end{matrix}\right.$ --- 等號對齊 `\begin{split}...\end{split}` 在方程式的開頭加上 `\begin{split}`,結尾加上 `\end{split}`,等號前加上 `&` ``` $\mathrm{Integrals\ are\ numerically\ approximated\ as\ finite\ series}:\\ \begin{split} \int_{a}^{b}x(t)dt &= \dfrac{b - a}{N} \\ &=\sum_{k=1}^{N}x(t_k)\cdot\dfrac{b-a}{N} \end{split} \\ where\ t_k = a + (b-a)\cdot k/N$ ``` $\mathrm{Integrals\ are\ numerically\ approximated\ as\ finite\ series}:\\ \begin{split} \int_{a}^{b}x(t)dt &= \dfrac{b - a}{N} \\ &=\sum_{k=1}^{N}x(t_k)\cdot\dfrac{b-a}{N} \end{split} \\ where\ t_k = a + (b-a)\cdot k/N$ --- 多行切割 `\begin{multline*}...\end{multline*}` 不換行: ``` $p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3 - 12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3 - a^2b - ab + c^5d^3 + c^4d^3 - cd$ ``` $p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3 - 12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3 - a^2b - ab + c^5d^3 + c^4d^3 - cd$ 換行: ``` $\begin{multline*}p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3 \\ - 12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3 - a^2b - ab + c^5d^3 + c^4d^3 - cd\end{multline*}$ ``` $\begin{multline*}p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3 \\ - 12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3 - a^2b - ab + c^5d^3 + c^4d^3 - cd\end{multline*}$ --- 置中對齊 `\begin{gather*}...\end{gather*}` ``` $\begin{gather*} 2x - 5y = 8 \\ 3x^2 + 9y = 3a + c \end{gather*}$ ``` $\begin{gather*} 2x - 5y = 8 \\ 3x^2 + 9y = 3a + c \end{gather*}$ --- 矩陣 ``` $\left( \begin{array}{ccc} y_1 & 2 & 3 \\ y_2 & 5 & 6 \\ 7 & 8 & 9 \\ \end{array} \right)$ ``` $\left( \begin{array}{ccc} y_1 & 2 & 3 \\ y_2 & 5 & 6 \\ 7 & 8 & 9 \\ \end{array} \right)$ ---