7/5 meeting === Recurrents and surperstable --- **Definition** Let $c \in \text{Config}(G)$, and let $S \subseteq \tilde{V}$. Suppose $c'$ is the configuration obtained from $c$ by firing the vertices in $S$. Then $c \xrightarrow{S} c'$ is a *legal* set-firing if $c'(v) \geq 0$ for all $v \in S$. **Definition** THn confinguration $c\in \text{Config}(G)$ is *superstable* is $c \geq 0$ and has no legal nonempty set-firings, i.e. for all nonempty $S \subseteq \tilde{V}$, there exists $v \in S$ such that $$ c(v) < \text{outdeg}_S{v} $$ We have the isomorphism : $$ \begin{align} \text{Config}(G)/\text{im}(\tilde{div}) &\xrightarrow{} \text{Jac}(G) \\ [c] &\xrightarrow{} [c-\text{deg}(c)q] \end{align} $$ So $c \sim c'$ as configurations exactly when $c -\text{deg}(c')q \sim c -\text{deg}(c')q$ as divisors. It follows form existence and uniqueness of q-reduced divisors that each $c \in \text{Config}(G)$. The collection of surperstables of $G$ forms an belian group where group where addition is the usual addition of configurations followed by surperstabilization. ![image](https://hackmd.io/_uploads/ry7top4DC.png) **Theorem 7.12** Let $c \in \text{Config}(G)$ and $c \geq 0$ (i.e. $c$ is sandpile). Then, + $c$ is recurrent if and only if $c_\text{max} -c$ is surperstable. ::: spoiler example ![image](https://hackmd.io/_uploads/Bk6_zWHv0.jpg) ::: --- Monodromy pairing === [Ref](https://arxiv.org/pdf/0907.4764) **Definition** Let $A$ be a matrix. Any matrix $L$ satisfying $ALA =A$ is called a generalized inverse of $A$. ![image](https://hackmd.io/_uploads/BkrQnC4vC.png) --- For $D_1, D_2$ in $\text{Div}^0(G)$, let $m_1$ and $m_2$ be integers such that $m_1D_1 = \text{div}(f_1)$ and $m_2D_2 = \text{div}(f_2)$ are principal; these exist because $\text{Jac}(G)$ is a finite group. One can easily show that $$ \frac{1}{m_2}\sum_{v \in V(G)}D_1(v)f_2(v) = \frac{1}{m_1}\sum_{v \in V(G)}D_2(v)f_1(v) $$ **Definition** The monodromy pairing $\langle\cdot\,,\cdot\rangle : \text{Jac}(G) \times \text{Jac}(G) \xrightarrow{} \mathbb{Q} / \mathbb{Z}$ defined by $$ \langle\overline{D_1},\overline{D_2}\rangle = \frac{1}{m_2} \sum_{v\in V(G)} D_1(v)f_2(2) (\mod{\mathbb{Z}}) $$ where $m_2D_2 = \text{div}(f_2)$. This is well-Defined, symmetric, bilnear, non-degenerate pairing on $\text{Jac}(G)$. ![image](https://hackmd.io/_uploads/ByrI5AEwC.png) **Proposition** Let $L$ be any generalized inverse of the Laplacian matrix $Q$. Then the monodromy pairing is given by $$ \langle\overline{D_1},\overline{D_2}\rangle = [D_1]^TL[D_2]^T (\text{mod}\mathbb{Z}) $$ ![image](https://hackmd.io/_uploads/rJlYsREv0.png)