6/25 meeting === --- The dollar game --- [The dollar game](https://thedollargame.io/game/level/100/100/1) --- ### Definition A *multigraph* $G = (V,H)$ is a pair of a set of *vertices* $V$ ans a multiset of *edges* $E$ comprised of unordered pairs $\{v,u\}$ of vertices. Here we only consider a graph to be finite, connected, undirected multigraph without loop. --- ![image](https://hackmd.io/_uploads/rkbQ1mBUR.png) Divisors represent distributions of wealth on $G$: if $D=\sum_{v \in V} D(v)v$, then each vertex(person) has $D(v)$ dollars. --- ![image](https://hackmd.io/_uploads/B1y51QSL0.png) The colection of divisors of degree $k$ is denote $\text{Div}^k(G)$. **Note.** For $v \in V$, $deg_G(v)$ denote its number of incident edges. If think of $v$ as a divisor, $deg(v)$. --- ![image](https://hackmd.io/_uploads/H1njkmB8C.png) Let $D \in \text{Div}(G)$ and $v,w \in V$. $$ D \xrightarrow{v} D' \xrightarrow{w} D''' \\ $$$$ \begin{align} D''' &= D' - \sum_{wu \in V}(w-u) \\ &= D - \sum_{vu \in V}(v-u) - \sum_{wu \in V}(w-u) \end{align} $$$$ D \xrightarrow{w} D'' \xrightarrow{v} D''' \\ $$ ![image](https://hackmd.io/_uploads/SyVHzXSUC.png) This show that the order of lending and borrowing moves does not matter. --- ![image](https://hackmd.io/_uploads/r1k9LmB8C.png) ![image](https://hackmd.io/_uploads/H1qjCNSL0.png) For $v \in V$, consider $D \xrightarrow{V\backslash\{v\}} D'$ $$ \begin{align} D' &= D - \sum_{u \in V\backslash\{v\}}\sum_{uw \in E}(u-w)\\ &= D - \sum_{uv \in E}(u-v)\\ &= D + \sum_{uv \in E}(v-u) \end{align} $$ It show that $D \xrightarrow{-v} D'$. Borring from $v \in V$ is the same as set-lending by $V\backslash\{v\}$, and a set-lending by $V$ has not net effect. --- ![image](https://hackmd.io/_uploads/r1EYmBS80.png) ![image](https://hackmd.io/_uploads/rJ6iQHSIR.png) ![image](https://hackmd.io/_uploads/SkiWVrH8A.png) For $D,D' \in \text{Div}(G)$, define $D \geq D'$ if $D(v) \geq D'(v)$ for all $v \in V$, $D \geq 0$ if $D(v) \geq 0$ for all $v \in V$ ![image](https://hackmd.io/_uploads/HJ7eBBBU0.png) ![image](https://hackmd.io/_uploads/BymODHrL0.png) ![image](https://hackmd.io/_uploads/rJzBdHrIA.png) --- ![image](https://hackmd.io/_uploads/S1_iwBBUA.png) **Corollary** If $\text{deg}(D) < 0$, then D is unwinnable --- ### Picard and Jacobian group The sum of $D,F \in \text{Div}(G)$ is defined vertex-wise: $$ D+F = \sum_{v\in V}(D(v)+F(v))v $$ If $D' \sim D$ and $F' \sim F$, then $D+F \sim D'+F'$ ![image](https://hackmd.io/_uploads/B1Q9loBL0.png) ![image](https://hackmd.io/_uploads/BJ1SfjBUR.png) > *Proof* > Homomorphic: Trivial > Injective: Suppose $\phi([A]) = (0,[e])$. Then $\text{deg}(A)=0$ and $[A - \text{deg}(A)q] = [e]$. So, $[A]=[e]$ > Surjective: Given $(n,[x]) \in \mathbb{Z}\times\text{Jac}(G)$. Let $D=x+nq$. > Then $\phi([D]) = (n,[D - \text{deg}(D)q]) = (n,[x])$ ![image](https://hackmd.io/_uploads/SJZlrsHI0.png) ![image](https://hackmd.io/_uploads/Sy2GrjBLC.png) --- Laplacian --- ![image](https://hackmd.io/_uploads/HJXYBsSLR.png) --- ![image](https://hackmd.io/_uploads/B1xHx3S8R.png) **Note.** $\mathcal{M}(G) = \mathbb{Z}^V$ ![image](https://hackmd.io/_uploads/SJrhf2BLC.png) (we write $\chi_v$ for $\chi_{\{v\}}$) Given any firing script $\sigma$, the result of applying the correspomding collection of lending moves to a divisor $D$ will be the divisor $D'$ given by: ![image](https://hackmd.io/_uploads/ryUSQhBUC.png) ![image](https://hackmd.io/_uploads/HyrlVhH8A.png) $D' = D - \text{div}(\sigma)$. We see that $D'$ is linearly equivalent to $D$, denote $D \xrightarrow{\sigma} D'$. ![image](https://hackmd.io/_uploads/SkFQB3SLR.png) :::spoiler proof ![image](https://hackmd.io/_uploads/ryaCYnBLA.png) ::: **Definition.** Divisors of the form $\text{div}(\sigma)$ is called *principal*. The set of of principlal divisors forms a subgroup $\text{Prin}(G) < \text{Div}^0{G}$ If $D$ is linerly equialence to $D'$, then $D' = D - \text{div}(\sigma)$. Thus, $D -D' \in \text{Prin}(G)$ Hence, we can expressthe Picard and Jacobian groups as quotients: ![image](https://hackmd.io/_uploads/rJP65nSUR.png) --- --- Now we show that $\text{div}:\mathcal{M}(G) \rightarrow \text{Div}(G)$ and $L:\mathbb{Z}^V \rightarrow \mathbb{Z}^V$ are essentially the same. ![image](https://hackmd.io/_uploads/H1Ka62r8A.png) Note that the mapping $v \mapsto \chi_v$ determines an isomorphis of $\text{Div}(G)$ with $\mathbb{Z}^V$. :::spoiler proof ![image](https://hackmd.io/_uploads/Bya3lTB8A.png) ::: --- To realize $L$ as a single matrix, fix an ordering $v_1,....v_n$ of the vertices of $G$, providing an ordered vasis for the free abelian group $\text{Div}(G)$ and a corresponding isomorphism with $\mathbb{Z}^n$. Writing $\chi_j := \chi_{v_j}$, it follows that $\{\chi_1,...,\chi_n\}$ is the dual basis of the free abelian group $\mathcal{M}(G) = \mathbb{Z}^V$. $$ \chi_j(v_i) = \begin{cases} 1 \quad i = j\\ 0 \quad i \neq j \end{cases} $$ ![image](https://hackmd.io/_uploads/HyW_-lPU0.png) $L$ is the $n \times n$ integer matrix with $ij$-entry $$ L_{ij} = L(\chi_j)(v_i) = \begin{cases} \text{deg}_G(v_i) & i =j \\ -(\# \text{ of edges between } v_i \text{ and } v_j) & i\neq j \end{cases} $$ ![image](https://hackmd.io/_uploads/HyHazxvIR.png) ![image](https://hackmd.io/_uploads/SkoV7xP8A.png) ![image](https://hackmd.io/_uploads/BJAsXgPIR.png) **Proof** Suppose $D' \sim D$. Then $D' = D + \sigma$ for some $\sigma \in \text{Prin}(G)$. Thus, $$ \begin{align} &(D'(v1),\cdots,D'(v_n)) = (D(v1)+\sigma(v_1),\cdots,D(v_n)+\sigma(v_n)) \\ \\ &(D(v1),\cdots,D(v_n)) - (D'(v1),\cdots,D'(v_n)) = (-\sigma(v_1),\cdots,-\sigma(v_n)) \in \text{im}(L) \end{align} $$ Isomorphism $\phi: \text{Pic}(G) \rightarrow \mathbb{Z}^n/\text{im}(L)$ $$ [D] \mapsto (D(v_1),\cdots,D(v_n))+\text{im}(L) $$ ![image](https://hackmd.io/_uploads/HyZxwevLR.png) ![image](https://hackmd.io/_uploads/HkitoxPUC.png) Example --- ![image](https://hackmd.io/_uploads/BJFiqawU0.png) ![image](https://hackmd.io/_uploads/ryno96w8A.png) --- ![image](https://hackmd.io/_uploads/HJy29pDUR.png) ![image](https://hackmd.io/_uploads/rJN2qTv8R.png) --- ![image](https://hackmd.io/_uploads/BJxn10P80.png) --- Fundamental theorem of finitely generated abelian groups --- ### Primary decomposition Suppose $G$ is finitely generated abelian groups. Then $G$ is isomorphic to a direct product of cyclic groups in the form $$ \mathbb{Z}_{p_1^{e_1}} \times \mathbb{Z}_{p_2^{e_2}} \times \cdots \mathbb{Z}_{p_n^{e_n}} \times \mathbb{Z} \times \cdots \times \mathbb{Z} $$ where $p_i$ are primes(not need distinct). The direct product is unqiue except for possible rearrangement of the factors. ### Invariant factor decomposition We can also write any finitely generated abelian group G as a direct sum of the form $$\mathbb {Z} ^{n}\times \mathbb {Z}_{k_{1}} \times \cdots \times \mathbb {Z} _{k_{u}}$$ where $k_1$ divides $k_2$, which divides $k_3$ and so on up to $k_u$. --- Let $A$ be abelian group. An element $a \in A$ is said to be a **torsion** element if it has finite order. The subset of all torsion elements of $A$ is a subgroup of $A$ is called the **torsion sugroup** of $A$, denote by $A_\text{tor}$ or $A_t$. A abelian gourps is called a **torsion group** if $A =A_t$, that is all elements of $A$ are of finite order. A group $G$ is said to be **torsion free** if whenever an element $x$ of $G$ has finite order, then $x# is the identity. If $A$ is an abelian group and $p$ is a prime number, we denote by $A(p)$ the subgroup of all elements $x \in A$ whose order is a power of $p$. Proof: method 1 Let $A$ be finitely generated abelian groups. 1. The finitely genrated torsion abelian group is finite. 2. $p$ is a primes such that $A(p) \neq 0$. Then $$A_t \cong \prod_{p} A_t(p)$$ 3. Every finite abelian $p$-group is isomorphic to a product of cyclic $p$-group. 4. $A/A_t$ is torsion-free, so it is free (abelian group). 5. $A \cong A_t \times A/A_t$ Proof: method 2 Let $A$ be abelian group generated by $\{a_1,\cdots,a_m\}$ Definie $\phi: \mathbb{Z}^m \rightarrow \ A$ by $$ (x_1,\cdots,x_m) \mapsto \sum x_1a_1 $$ By the isomorphism theorems, $A \cong \mathbb{Z}^m/\ker(\phi)$ Suppose $\ker(\phi)$ is generated by $$ \{(a_{1i},\cdots,a_{mi}) \mid i = 1 \sim n\} $$ Let $$ M = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \cdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\\ \end{pmatrix}_{m\times n} $$ Thus,$A \cong \mathbb{Z}^m/\ker(\phi) \cong \mathbb{Z}^m/\text{im}(M)$ Consider the inetger row/column operations on an integer matrix: • Switch two rows/columns. • Multiply an invertible integer (which means ±1) to one row/column. • Add an integer multiple of a row/column to another row/column. Every operations is invitible. Every row opertaions can be written as an invertible matrix $P_{n\times n}$, every column opertaions can be written as an invertible matrix $Q_{m \times m}$. If a squence of inetger row/column operations transforming $M$ into $N$. ,then $PMQ = N$ where $P_{m\times m }$ and $Q_{n \times n}$ are invertible matrice. **Theorem** $\mathbb{Z}^m/\text{im}(M) \cong \mathbb{Z}^m/\text{im}(N)$ ::: spoiler proof ![image](https://hackmd.io/_uploads/ByfMPGw8C.png) ::: ![image](https://hackmd.io/_uploads/BJHf55v8R.png) e.g. ![image](https://hackmd.io/_uploads/SyiiT5w8A.png) For any $M \in M_{m\times n}(\mathbb{Z})$, one cay apply a sequence of row and column operations to obtain a unique Smith normal form. ::: spoiler proof ![image](https://hackmd.io/_uploads/BJDxMjPL0.png) ![image](https://hackmd.io/_uploads/SyqmgoP80.png) ![image](https://hackmd.io/_uploads/r1BBljvLR.png) ::: **Lemma** : $\mathbb{Z}^m/\text{im}(N) \cong \mathbb{Z}_{s_1} \times \cdots \mathbb{Z}_{s_k} \times \mathbb{Z}^{m-k}$, where $N$ is Smith normal form and $s_1,\cdots,s_k$ is invariant factors of $N$ *proof* Define $f: \mathbb{Z}^m \rightarrow \mathbb{Z}_{s_1} \times \cdots \mathbb{Z}_{s_k} \times \mathbb{Z}^{m-k}$ by $$ (a_1,a_2,\cdots,a_k,\cdots,a_m) \mapsto (a_1\mod s_1,\cdots,a_k\mod s_k,a_{k+1}\cdots,a_m) $$ Then $\ker(f) = \text{im}(N)$ Hence, $\mathbb{Z}^m/\text{im}(N) \cong \mathbb{Z}_{s_1} \times \cdots \mathbb{Z}_{s_k} \times \mathbb{Z}^{m-k}$