--- title: "Normalizing the Capacity to Dominate" --- # Normalizing the Capacity to Dominate ## Original Version The original, overall measure is $$ \mathcal{C}_{A \rightarrow B} = f(\{\mathcal{C}_{A \rightarrow B}(\widetilde{s}) \mid \widetilde{s} \in (S_A \setminus s^*)\}), $$ i.e., a function of the strategy-specific capacities, where $\mathcal{I}$ stands for "Interference" and $\mathcal{A}$ stands for "Arbitrariness" $$ \mathcal{C}_{A \rightarrow B}(\widetilde{s}) = \frac{\mathcal{I}_{A \rightarrow B}(\widetilde{s})}{\mathcal{A}_{A \rightarrow B}(\widetilde{s})} = \frac{\mathcal{L}_{A \rightarrow B}(\widetilde{s})}{\mathcal{L}_{A \rightarrow A}(\widetilde{s})} = \frac{\pi_B(s^*) - \pi_B(\widetilde{s})}{\pi_A(s^*) - \pi_A(s)} $$ We can define the interference ## Normalized Version Let's now normalize both the numerator and denominator of this expression, so that the terms are **relative to** the minimum and maximum possible payoffs. We can define $\widehat{\mathcal{I}}$ to be the normed interference, and $\widehat{\mathcal{A}}$ to be the normed arbitrariness: $$ \widehat{\mathcal{I}}_{A \rightarrow B} = \frac{\pi_B(s^*) - \pi_B(\widetilde{s})}{\pi_B^+ - \pi_B^-}, $$ where $\pi_B^+$ is the maximum possible payoff for $B$, $\max\{\pi_B(s) \mid s \in S\}$ and $\pi_B^-$ is the minimum possible payoff for $B$, $\min\{\pi_B(s) \mid s \in S\}$. And similarly, for $\widehat{\mathcal{A}}$, $$ \widehat{\mathcal{A}}_{A \rightarrow B} = \frac{\pi_A(s^*) - \pi_A(\widetilde{s})}{\pi_A^+ - \pi_A^-} $$ Then the measure becomes $$ \widehat{\mathcal{C}}_{A \rightarrow B}(\widetilde{s}) = \frac{\widehat{\mathcal{I}}_{A \rightarrow B}}{\widehat{\mathcal{A}}_{A \rightarrow B}} = \frac{\frac{\pi_B(s^*) - \pi_B(\widetilde{s})}{\pi_B^+ - \pi_B^-}}{\frac{\pi_A(s^*) - \pi_A(\widetilde{s})}{\pi_A^+ - \pi_A^-}} = \frac{\pi_B(s^*) - \pi_B(\widetilde{s})}{\pi_A(s^*) - \pi_A(\widetilde{s})}\cdot \frac{\pi_A^+ - \pi_A^-}{\pi_B^+ - \pi_B^-} $$ So, we can define the normalization constant $r$ (for "ratio") $$ r_{A \rightarrow B} = \frac{\pi_A^+ - \pi_A^-}{\pi_B^+ - \pi_B^-} $$ and the normed measure is just the original measure multiplied by this constant: $$ \widehat{\mathcal{C}}_{A \rightarrow B} = r_{A \rightarrow B} \cdot \mathcal{C}_{A \rightarrow B} $$ ## Example: Invisible Hand Game | | Corn | Tomatoes | | -------- | -------- | -------- | | **Corn** | 2, **4** | **4**, 3 | | **Tomatoes** | **5**, **5** (\*) | 3, 2 | So that the Nash eq is $s^* = (\textsf{Tomato}, \textsf{Corn})$, and payoffs are $$ \begin{align*} \pi_R(s^*) = 5 \\ \pi_C(s^*) = 5 \end{align*} $$ ### Row player deviation The row player can deviate from $\textsf{Tomato}$ to $\textsf{Corn}$, producing the new strategy profile $\widetilde{s} = (\textsf{Corn}, \textsf{Corn})$, which gives $$ \begin{align*} \mathcal{I}_{R \rightarrow C}(\widetilde{s}) &= 5 - 4 = 1 \\ \mathcal{A}_{R \rightarrow C}(\widetilde{s}) &= 5 - 2 = 3, \end{align*} $$ so that the capacity under the original measure is $$ \mathcal{C}_{R \rightarrow C} = \frac{1}{3}. $$ To **normalize** $\mathcal{I}$ and $\mathcal{A}$, we need to note that $\pi_R^+ = 5$, $\pi_R^- = 2$, $\pi_C^+ = 5$, and $\pi_C^- = 2$. So $\pi_R^+ - \pi_R^- = 3$ and $\pi_C^+ - \pi_C^- = 3$. Then $$ \widehat{\mathcal{I}}_{R \rightarrow C} = \frac{\mathcal{I}_{R \rightarrow C}}{\pi_C^+ - \pi_C^-} = \frac{1}{3} $$ and $$ \widehat{\mathcal{A}}_{R \rightarrow C} = \frac{\mathcal{A}_{R \rightarrow C}}{\pi_R^+ - \pi_R^-} = \frac{3}{3} = 1. $$ This gives the **normalized** capacity of $$ \widehat{\mathcal{C}}_{R \rightarrow C} = \frac{\frac{1}{3}}{1} = \frac{1}{3}. $$ ### Column player deviation The column player can deviate from $\textsf{Corn}$ to $\textsf{Tomato}$, producing the new strategy profile $\widetilde{s} = (\textsf{Tomato}, \textsf{Tomato})$, which gives $\pi_R = 3$, $\pi_C = 2$. $$ \begin{align*} \mathcal{I}_{C \rightarrow R}(\widetilde{s}) &= 5 - 3 = 2 \\ \mathcal{A}_{C \rightarrow R}(\widetilde{s}) &= 5 - 2 = 3, \end{align*} $$ so that the capacity under the original measure is $$ \mathcal{C}_{R \rightarrow C} = \frac{2}{3}. $$ To **normalize** $\mathcal{I}$ and $\mathcal{A}$, we need to note that $\pi_R^+ = 5$, $\pi_R^- = 2$, $\pi_C^+ = 5$, and $\pi_C^- = 2$. So $\pi_R^+ - \pi_R^- = 3$ and $\pi_C^+ - \pi_C^- = 3$. Then $$ \widehat{\mathcal{I}}_{C \rightarrow R} = \frac{\mathcal{I}_{C \rightarrow R}}{\pi_R^+ - \pi_R^-} = \frac{2}{3} $$ and $$ \widehat{\mathcal{A}}_{C \rightarrow R} = \frac{\mathcal{A}_{C \rightarrow R}}{\pi_C^+ - \pi_C^-} = \frac{3}{3} = 1. $$ This gives the **normalized** capacity of $$ \widehat{\mathcal{C}}_{C \rightarrow R} = \frac{\frac{2}{3}}{1} = \frac{2}{3}. $$ ## Affine transformations for these payoffs Now say all payoffs get transformed by $f(x) = ax + b$: | | Corn | Tomatoes | | -------- | -------- | -------- | | **Corn** | $2a + b$, $4a+b$ | $4a + b$, $3a + b$ | | **Tomatoes** | $5a + b$, $5a + b$ (\*) | $3a + b$, $2a + b$ | The Nash is still $s^* = (\textsf{Tomato}, \textsf{Corn})$, but now it gives $\pi_R(s^*) = 5a + b$, $\pi_C(s^*) = 5a + b$. ### Row player deviates... Row player can deviate from $\textsf{Tomato}$ to $\textsf{Corn}$, producing the new strategy profile $\widetilde{s} = (\textsf{Corn}, \textsf{Corn})$, which gives payoffs of $\pi_R(\widetilde{s}) = 2a + b$, $\pi_C(\widetilde{s}) = 4a + b$. Then interference and arbitrariness are $$ \mathcal{I}_{R \rightarrow C}(\widetilde{s}) = (5a + b) - (4a + b) = a $$ and $$ \mathcal{A}_{R \rightarrow C}(\widetilde{s}) = (5a + b) - (2a + b) = 3a. $$ Which means that the original capacity measure gives $$ \mathcal{C}_{R \rightarrow C} = \frac{a}{3a} = \frac{1}{3}. $$ ## Affine transformations for general payoffs Now say all payoffs are variables such that $a > b > c > d$: | | Corn | Tomatoes | | -------- | -------- | -------- | | **Corn** | $d$, $b$ | $b$, $c$ | | **Tomatoes** | $a$, $a$ (\*) | $c$, $d$ | And **these** get transformed by $f(x) = \alpha x + \beta$: | | Corn | Tomatoes | | -------- | -------- | -------- | | **Corn** | $\alpha d + \beta$, $\alpha b + \beta$ | $\alpha b + \beta$, $\alpha c + \beta$ | | **Tomatoes** | $\alpha a + \beta$, $\alpha a + \beta$ (\*) | $\alpha c + \beta$, $\alpha d + \beta$ | The Nash is still $s^* = (\textsf{Tomato}, \textsf{Corn})$, but now it gives $\pi_R(s^*) = \alpha a + \beta$, $\pi_C(s^*) = \alpha a + \beta$. ### Row player deviates... Row player can deviate from $\textsf{Tomato}$ to $\textsf{Corn}$, producing the new strategy profile $\widetilde{s} = (\textsf{Corn}, \textsf{Corn})$, which gives payoffs of $\pi_R(\widetilde{s}) = \alpha d + \beta$, $\pi_C(\widetilde{s}) = \alpha b + \beta$. Then interference and arbitrariness are $$ \mathcal{I}_{R \rightarrow C}(\widetilde{s}) = (\alpha a + \beta) - (\alpha b + \beta) = \alpha(a-b) $$ and $$ \mathcal{A}_{R \rightarrow C}(\widetilde{s}) = (\alpha a + \beta) - (\alpha d + b) = \alpha(a-d). $$ Which means that the original capacity measure gives $$ \mathcal{C}_{R \rightarrow C} = \frac{\alpha(a-b)}{\alpha(a-d)} = \frac{a-b}{a-d}. $$ To **normalize**, we note that * $\pi_R^- = \alpha d + \beta$ and $\pi_R^+ = \alpha a + \beta$, so that $\pi_R^+ - \pi_R^- = \alpha a + \beta - (\alpha d + \beta) = \alpha(a - d)$. * $\pi_C^- = \alpha d + \beta$, $\pi_C^+ = \alpha a + \beta$, so $\pi_C^+ - \pi_C^- = \alpha(a-d)$. The normalized measures are thus $$ \widehat{\mathcal{I}}_{R \rightarrow C}(\widetilde{s}) = \frac{\alpha(a-b)}{\alpha(a-d)} = \frac{a-b}{a-d}, $$ and $$ \widehat{\mathcal{A}}_{R \rightarrow C}(\widetilde{s}) = \frac{\alpha(a-d)}{\alpha(a-d)} = 1 $$ making the overall normalized measure $$ \widehat{\mathcal{C}}_{R \rightarrow C} = \frac{\frac{a-b}{a-d}}{1} = \frac{a-b}{a-d}. $$