# 2629. Function Composition
###### tags:`Function` | `leetCode`
<font color="#01AE9A" background="E1F3F0">`easy`</font>
### 題目
Given an array of functions [f1, f2, f3, ..., fn], return a new function fn that is the function composition of the array of functions.
The function composition of [f(x), g(x), h(x)] is fn(x) = f(g(h(x))).
The function composition of an empty list of functions is the identity function f(x) = x.
You may assume each function in the array accepts one integer as input and returns one integer as output.
### Example
```javascript=
Input: functions = [x => x + 1, x => x * x, x => 2 * x], x = 4
Output: 65
Explanation:
Evaluating from right to left ...
Starting with x = 4.
2 * (4) = 8
(8) * (8) = 64
(64) + 1 = 65
```
```javascript=
Input: functions = [x => 10 * x, x => 10 * x, x => 10 * x], x = 1
Output: 1000
Explanation:
Evaluating from right to left ...
10 * (1) = 10
10 * (10) = 100
10 * (100) = 1000
```
---
### 解題邏輯
這題要注意看他提示的呼叫 fn 的方式
```javascript=
/**
* const fn = compose([x => x + 1, x => 2 * x])
* fn(4) // 9
*/
```
因為我一開始一直不知道這個4是怎麼傳進去的,還自己亂加第二個參數XD
```javascript=
var compose = function(functions) {
return function(x) {
if(functions.length===0)return x
for(let i = functions.length-1;i>=0;i--){
x =functions[i](x)
}
return x
}
};
const fn = compose([x => x + 1, x => 2 * x])
fn(4) // 9
```
4會在return fun 裡面接到,然後再將迴圈的初始條件設成 functions 的最後一個就可以了
---
在解析中還有看到 reduceRight 的寫法蠻酷的給大家參考
```javascript=
function compose(functions): F {
return (x: number) => functions.reduceRight((acc, f) => f(acc), x);
}
;
```