# 309553032_林育駿_hw07 ###### tags: `Biostatistics` ## 1 ### (1) $0.2=Pr(Z>k)=1-Pr(Z\leq k)$ $\iff Pr(Z\leq k)=0.8$ | 0.040 | k | 0.055 | | ------ | ------ | ------ | | 0.7995 | 0.8000 | 0.8023 | $k = 0.841785$ (Solve by linear interpolation, the same for the following) ### (2) $0.1=Pr(Z>k)=1-Pr(Z\leq k)$ $\iff Pr(Z\leq k)=0.9$ | 1.280 | k | 1.290 | | ------ | ------ | ------ | | 0.8997 | 0.9000 | 0.9015 | $k = 1.281666$ ### (3) $0.05=Pr(Z>k)=1-Pr(Z\leq k)$ $\iff Pr(Z\leq k)=0.95$ | 1.640 | k | 1.650 | | ------ | ------ | ------ | | 0.9495 | 0.9500 | 0.9505 | $k = 1.644999$ ### (4) $Pr(Z\leq k)=0.2$ $\implies Pr(Z\gt (-k))=0.2$ ( similarity of Gaussian $\implies -k=0.841785$ ( (1) $\implies k = -0.841785$ ### (5) $Pr(Z\leq k)=0.1$ $\implies Pr(Z\gt (-k))=0.1$ ( similarity of Gaussian $\implies -k=1.281666$ ( (2) $\implies k = -1.281666$ ### (6) $Pr(Z\leq k)=0.05$ $\implies Pr(Z\gt (-k))=0.05$ ( similarity of Gaussian $\implies -k=1.644999$ ( (3) $\implies k = -1.644999$ ## 2 ### (a) $\bar{X}\sim N(\mu,\frac{\sigma^2}{n})=N(91.1,4.571428)$ ### (b) margin of error: $z_{0.025}\times \frac{\sigma}{\sqrt{n}}=1.96\times \frac{8}{\sqrt{14}}=4.190656$ confidence interval: [86-4.190656,86+4.190656] = [81.809344, 90.190656] (mm) critical values: 81.809344, 90.190656 (mm) ### (c\) confidence interval: [91.1-4.190656,91.1+4.190656] = [86.909344, 95.290656] (mm) ## 3 ### (a) margin of error: $z_{0.05}\times \frac{\sigma}{\sqrt{n}}=1.645\times \frac{8}{\sqrt{14}}=3.517157$ (mm) confidence interval: [91.1-3.517157, 91.1+3.517157] = [87.582843, 94.617157] (mm) ### (b) margin of error = $z_{\alpha/2}\times\frac{\sigma}{\sqrt{n}}$ 而 percentage of confidence interval = $1-\alpha$ 由 ![](https://i.imgur.com/tJIhmlB.png) 可知在固定$\sigma$與$n$時,信心區間越小,margin of error越短。