# 論文 NoteBook - Model Compression <!-- - 進入 [Book Mode](https://hackmd.io/@johnnyasd12/ryhhmfvim/https%3A%2F%2Fhackmd.io%2Fs%2FBy2jChJk4) --- --> <!-- # Survey --> <!-- ## CS231n - [Lec 15: Efficient Methods and Hardware for Deep Learning](https://hackmd.io/s/By2jChJk4) --> <!-- ## A Survey of Model Compression and Acceleration for Deep Neural Networks, IEEE Signal Processing Magazine, 2017 --> <!-- [深度神经网络模型加速与压缩主要方法概述与会议论文列表](https://zhuanlan.zhihu.com/p/43424150) [Awesome-model-compression-and-acceleration](https://github.com/memoiry/Awesome-model-compression-and-acceleration) [Awesome Knowledge Distillation](https://github.com/dkozlov/awesome-knowledge-distillation) [神经网络压缩综述 (論文+概述)](https://blog.csdn.net/qiu931110/article/details/80189905) [模型压缩那些事(一)](https://zhuanlan.zhihu.com/p/28439056) [模型压缩总览](https://www.jianshu.com/p/e73851f32c9f) --> --- # I. Knowledge Distillation --- <!-- ## Do Deep Nets Really Need to be Deep?, NIPS'14 --- ## Deep Mutual Learning, 2017 - 不需要 teacher model,僅靠 2 個 student 即可相互學習 --- ## [[TF](http://github.com/iRapha/replayed_distillation)] Data-Free Knowledge Distillation for Deep Neural Networks, NIPS 2017 Workshop --- ## Large-Scale Domain Adaptation via Teacher-Student Learning, INTERSPEECH 2017 --- ## Sarah Tan, Rich Caruana et al., Transparent Model Distillation, 2018 --- --> ## G. Hinton et al. [Distilling the Knowledge in a Neural Network](https://hackmd.io/s/HyofCnRAQ), 2015 ### [TTIC Distinguished Lecture Series: Dark Knowledge](https://hackmd.io/s/By1w-0dKX) - Geoffrey Hinton --- ## [FitNets: Hints for Thin Deep Nets](https://hackmd.io/s/S1mVW60RQ), ICLR 2015 --- ## [A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning](https://hackmd.io/s/H1-87p0Am), CVPR 2017 --- ## [Rocket Launching: A Universal and Efficient Framework for Training Well-performing Light Net](https://hackmd.io/s/HkX4Ep0RX), AAAI 2018 --- ## [Learning Efficient Object Detection Models with Knowledge Distillation](https://hackmd.io/s/By47raAR7), NIPS 2017 --- <!-- ## Sequence-Level Knowledge Distillation, EMNLP 2016 --- ## Unifying distillation and privileged information ### [GitXiv](http://www.gitxiv.com/posts/wzPhbJgg3BmQjSxzf/unifying-distillation-and-privileged-information) ### 結合兩個東西 --- ## MobileID: Face Model Compression by Distilling Knowledge from Neurons, AAAI 2016 --- ## Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer, ICLR, 2017 --- ## Knowledge Distillation via Generative Adversarial Networks ### [slide](http://aliensunmin.github.io/aii_workshop/2nd/slides/8.pdf) --- --> # II. Parameter Quantization --- ## [Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding](https://hackmd.io/s/S1BQFpRC7), ICLR 2016 (Best Paper) --- <!-- ## TOWARDS THE LIMIT OF NETWORK QUANTIZATION, ICLR, 2017 - Hessian Weight Quantization --- ## Loss-aware Binarization of Deep Networks,\[ICLR'17\] cited 30 --- ## Deep Learning with Low Precision by Half-wave Gaussian Quantization, \[CVPR'17\] cited 42 --- ## Training and inference with integers in deep neural networks\[ICLR'18\] cited 16 --- --> # III. Parameter Pruning <!-- --- ## Second order derivatives for network pruning - Optimal brain surgeon, 1993 --- ## [X] Data-free parameter pruning for deep neural networks, 2015 --- --> ## [Pytorch] [Learning both Weights and Connections for Efficient Neural Networks, NIPS](https://hackmd.io/s/SJpMgu8gE), 2015 <!-- - [论文 \- Learning both Weights and Connections for Efficient Neural Networks](https://xmfbit.github.io/2018/03/14/paper-network-prune-hansong/) --- ## [X] Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures, 2016 --- ## [Caffe] Dynamic Network Surgery for Efficient DNNs, NIPS'16 --- ## [Distiller] Learning Structured Sparsity in Deep Neural Networks, NIPS'16, cited 279 --- --> ## [Pytorch] [Pruning Filters for Efficient ConvNets](https://hackmd.io/s/S1rXcT0R7), ICLR 2017 <!-- --- ## [Pytorch] Pruning convolutional neural networks for resource efficient inference, ICLR 2017 --- ## [X] Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning, CVPR 2017 --- ## [keras] Soft weight-Sharing for Neural Network Compression, ICLR 2017 --- ## [Pytorch] DSD: Dense-Sparse-Dense Training for Deep Neural Networks, ICLR'17 --- --> ## [Caffe] [ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression](https://hackmd.io/s/r1y_JptlN), ICCV 2017 <!-- --- ## [PyTorch] Learning efficient convolutional networks through network slimming. In ICCV, 2017 - [中文筆記](https://blog.csdn.net/u011995719/article/details/78788336) --- ## [Distiller] Stanford University, Google Inc, To prune, or not to prune: exploring the efficacy of pruning for model compression --- --> ## [Pytorch] [PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning](https://hackmd.io/s/HJ7gWUseV), CVPR 2018 <!-- --- ## [PyTorch] Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights --- ## [Tensorflow] Google Brain, Targeted Dropout, NeurIPS 2018 Workshop - [Hinton 等研究者提出神似剪枝的 Targeted Dropout](https://www.jiqizhixin.com/articles/112501) --- ## [PyTorch] Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers, ICLR 2018 - [GitHub](https://github.com/jack-willturner/batchnorm-pruning) - [中文筆記](https://blog.csdn.net/hw5226349/article/details/84779325) - [中文?](https://flashgene.com/archives/157.html) --- ## Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks, IJCAI 2018 --> # IV. Others ## [SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size](https://hackmd.io/s/HJ13qa0CQ), ICLR 2017 --- ## Google Inc., [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://hackmd.io/s/BkW7opARm), 2017 <!-- --- ## MobilenetV2: Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation --- ## Xception: Deep learning with depthwise separable convolutions --- # V. Transfer Learning ## [X] An Investigation of Low-Rank Decomposition for Increasing Inference Speed in Deep Neural Networks With Limited Training Data ## [X] Pruning Convolutional Neural Networks for Resource Efficient Transfer Learning ## [X] Transfer Knowledge for High Sparsity in Deep Neural Networks ## [X] Transferring and Compressing CNNs for Face Representation ## [Pytorch] PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, CVPR 2018 ## [X] Pruning Convolutional Filters with First Order Taylor Series Ranking, 2018 --> <!-- ## idea: 桌球 - 看別人怎麼打 - 自己整理出一套思路 - 一直練習 - 比賽、臨場感 (氣氛、模式和平常不一樣) 同學教 rubik's cube - 自己上網找一些 tutorial - 花了幾百塊買一顆彈簧式的 - 自己摸索出一些 花式 - 營隊的新朋友也有在玩的,很強;learned 遙控飛機 - 先熟悉電腦模擬的 - 才敢玩真的 tu數學 - 高二 A老師帶我們打比賽 - 高三 B老師教太爛了 他上他的 我讀我的 - 教學相長 - 討論 - 費曼學習法 - teacher-student-2nd_student - teacher net + student net + auxiliary classifier(with KD) - 讀書要畫重點 - 課前預習 - 課後複習 - 集中注意力 - 用自己明白的話寫下來 - latent variable 可以重構老師教的內容 - 許多學科都有延續性,若前面單元不求甚解,後面章節就難學得好了 - curriculum learning - 使用多種學習方法 - 一次只做一件事 xdite - 快速摘要出幾個關鍵字 - [如何在五天內快速的「學會」一門技能](http://smalltalk.xdite.net/posts/313532-how-to-learn-a-skill-quickly) - [把一門學問「學好」的紥實方式](http://smalltalk.xdite.net/posts/313535-science-in-a-learning-method-of-solid) - 把 NN 自己標的 label 也當成部分 label - 有人做過了 - 上課 學習效果? - 如何教學? --> <!-- Model 從小變大 incrementally 從簡單變複雜 shallow 的 model 從瘦變胖 (neuron 越來越多),最小化 neuron 數, Hinton 例如 1. dropout 前面 layer 少,後面 layer 多 可能固定 dropout? 2. Boosting 3. 先學 binary ,後來學 multiclass 4. 二分法,tree,新的樹枝就可以是新的 class? ========================================= 應用 也可做 video highlight 模型簡化 gait 模型簡化 ========================================= 可做 LSTM 模型簡化 先學日週期,再學月週期 LSTM簡化不適合 highlight (? --> ###### tags: `paper notebook` `model compression`
{"metaMigratedAt":"2023-06-14T18:33:37.492Z","metaMigratedFrom":"Content","title":"論文 NoteBook - Model Compression","breaks":true,"contributors":"[{\"id\":\"4abe7eb8-086c-4647-9fa8-1faab06351d5\",\"add\":65500,\"del\":59561},{\"id\":\"c6f6c251-a3fa-49e5-a92e-e61ec38e9d7a\",\"add\":4383,\"del\":2247}]"}
Expand menu