--- tags: Linear Algebra - HungYiLee --- Linear Algebra - Lec 18~20: Subspace and Basis === [TOC] # [課程網站](http://speech.ee.ntu.edu.tw/~tlkagk/courses_LA18.html) # [Lecture 18: Subspace](https://www.youtube.com/watch?v=pXtXnY2b2-E&list=PLJV_el3uVTsNmr39gwbyV-0KjULUsN7fW&index=18) ![](https://i.imgur.com/mWqpC9i.png) ## Subspace v.s. Span - the **span of a vector set is a subspace** - ![](https://i.imgur.com/XzWwCJp.png) - $u = c_1w_1+...+c_kw_k, v = c_1'w_1+...+c_k'w_k$ - **反過來**其實也成立,**每一個 Subspace 都是由某個 vector set 產生出來的 Span**,下節課會講 ## Null Space - The null space of a matrix $A$ is the **solution set** of $Ax=0$, denoted as $Null(A)$ - $Null(A)$ is a **subspace**. ## Column Space and Row Space ### Column Space - column space of matrix $A$ is the **span of its columns**, it is denoted as $\text{Col}\, A$ - $A\in\mathbb R^{m\times n}\implies \text{Col}\,A=\{Av:v\in\mathbb R^n\}$ - if matrix $A$ represents a function, then $\text{Col}\,A$ is the **range of the function** - 因為 $\text{Col}\,A$ 此時代表 $Ax$ 的**所有可能的輸出**所形成的集合 ### Row Space - row space of matrix $A$ is the **span of its rows**, denoted as $\text{Row}\,A$ - $\text{Row}\,A=\text{Col}\,A^T$ ### Column Space = Range ![](https://i.imgur.com/nC3SJyZ.png) ## RREF v.s. Column Space & Row Space Original Matrix $A$ v.s. its RREF $R$ (Review of Lec 10) - Columns: - The relations between the columns are the same (review) - **But** the span of the columns are different - $\text{Col}\,A\neq\text{Col}\,R$ - Rows: - The relations between the rows are changed - **But** the span of the rows are the same - $\text{Col}\,A=\text{Col}\,R$ ## Review: Consistent ![](https://i.imgur.com/WsYo6nF.png) ## Conclusion Subspace is Closed under **Addition and Multiplication**. # [Lecture 19: Basis](https://www.youtube.com/watch?v=GB48DyvC14o&list=PLJV_el3uVTsNmr39gwbyV-0KjULUsN7fW&index=19) ## Outline - what is a basis **for a subspace**? - confirming that a set is a basis for a subspace ## Basis - Let $V$ be a **nonzero subspace** of $\mathbb R^n$. A <font color="red">basis $B$</font> for $V$ is a <font color="blue">linearly independent</font> <font color="green">generation set of $V$</font> - $B$ is generation set of $V$ 表示 <font color="green">$V=Span\,B$</font> ### Example ![](https://i.imgur.com/EPpvOXi.png) ## Basis of Column Space - The **pivot column** of matrix $A$ form a basis for its **column space** - pivot column 即矩陣 $A$ 的 RREF 的 leading entry 所在 columns (Lec 8) ![](https://i.imgur.com/upNJR7H.png) ## Property of Span ![](https://i.imgur.com/R3SC3A5.png) ## Basis 最重要的 3 個定理 (Theorem) & Dimension ![](https://i.imgur.com/mPhSym7.png) - The number of vectors in a basis for a nonzero subspace $V$ is called dimension of $V$, denoted $dim(V)$ ## 先證明第三個定理 - Any two bases of a subspace $V$ contain **the same number** of vectors ![](https://i.imgur.com/rD7PxyC.png) ## n 維空間的 basis 就有 n 個 vector,dimension 就是 n ![](https://i.imgur.com/73wLWbO.png) ### Example for finding dim V ![](https://i.imgur.com/xN0ryBo.png) - 這裡可複習一下 Lec 8 的 Parametric Representation - 把 **linear system 的解** 給算出來,就可以得到它的 **basis** - ***Q: 是指 column space 的 basis 嗎??? 還是 Null Space 的 basis ??? 還是都可以啊???*** - 看到這樣的式子,換句話說就是 Span of 這三個 vector 會包含 $b$ ## 證明第一個定理 懶得看ㄌ,略過 要先證明 reduction theorem ### Reduction Theorem - 所有的 generation set 裡面都包含了 basis (basis 的 vector 數目一定小於等於 generation set 的 vector 數目) 證明: 將 generation set 裡的所有 vector 都排成一個 matrix $A$,而這個 matrix 的 column space 的 basis 就是它的 pivot column,得證。 - 記憶法:**所有的 generation set 心中都有一個 basis** ## 證明第二個定理 - 若 basis 有 $k$ 個 vector,則在 subspace 中找不到多於 $k$ 個 independent 的 vector ### Extension Theorem - Given an independent vector set $S$ in the subspace, $S$ can be extended to a basis by adding more vectors. - 記憶法:**indepdent vector set: 我不是 basis,就是正在成為 basis 的路上** 證明: ![](https://i.imgur.com/9l1zC03.png) ## Summary ![](https://i.imgur.com/Qsxqjun.png) ## Confirming that a set is a basis ![](https://i.imgur.com/Jp7i7U2.png) 有點難,所以我們需要另外一種方式來檢查是否為 basis ## Another way to confirm if is basis ![](https://i.imgur.com/cjpwdzV.png) - 此時只需要檢查其中一個條件,basis 就成立 證明: ![](https://i.imgur.com/9T4WWsr.png) Example: ![](https://i.imgur.com/fg5oDTE.png) # [Lecture 20: Column Space, Null Space, Row Space](https://www.youtube.com/watch?v=aW0JVmpIxas&list=PLJV_el3uVTsNmr39gwbyV-0KjULUsN7fW&index=20) ## Review of Column/Null/Row Space (Lec 18) $A\in\mathbb R^{m\times n}$ - Column Space - $Col\,A\in\mathbb R^m$ - 是 $A$ 的 columns 的 linear combination 的集合 - 是 $A$ 這個 linear system 的 co-domain 的 range - Null Space - $Null\,A\in\mathbb R^n$ - 是 $Ax=0$ 的所有解 $x$ 形成的集合 - 必定包含 zero vector - Row Space - $Row\,A=Col\,A^T$ ![](https://i.imgur.com/DXoOrux.png) - 那如何找到這些 space 的 **basis**、計算它們的 **dimension** 呢? ## Column Space: Basis and Dimension - basis: **pivot columns** of $A$ form a basis of $Col\,A$ - **Dim(Col A)** = number of pivot columns of $A$ = $rank\,A$,所以 $A$ 的 rank 又等於 $A$ 的 column space 的 dimension ### Review of Rank: - Maximum number of independent columns - Number of pivot columns - Number of non-zero rows in $RREF(A)$ - Number of basic variables Now we also know that $rank\,A$ is - **Dim (Col A)**: dimension of column space of $A$ - Dimension of the range of $A$ ## Null Space: Basis and Dimension - Basis ![](https://i.imgur.com/5naBO7P.png) 1. 把 $A$ 做 RREF 2. 轉換成 parametric representation (review Lec 8) 3. 再轉換成向量 linear combination 的形式,那些**和 free variable 相乘的 vectors** 就是 basis - Dimension - $Dim(Null\,A)\\ = \text{number of free variables}\\=Nullity\,A\\=n-rank(A)$ 如此我們知道 - $A$ 的 column space 的 dimension 是 $rank(A)$ - $A$ 的 null space 的 dimension 是 $nullity(A)$ 由此可知,$Dim(Col\,A)+Dim(Null\,A)=n$,即 - **$A$ 的 column space 和 null space 的 dimension 加起來會是 $n$** ## Row Space: Basis and Dimension ![](https://i.imgur.com/dIJGqO5.png) - **Basis: non-zero rows of RREF(A)** - **Dimension: Rank A (居然和 column space 的 dimension 一樣!)** ## Rank A (revisit) ![](https://i.imgur.com/NReTKx8.png) ## 矩陣做 transpose 後,rank 仍一樣 ![](https://i.imgur.com/Qoa5DKe.png) - $Rank\,A=Rank\,A^T$ ## Dimension Theorem ![](https://i.imgur.com/CUE5yRQ.png) - **Dim of Range + Dim of Null = Dim of Domain** - domain 是該 linear system 所有可能的 input 形成的集合;是所有可能的 output 形成的集合??? ## Summary ![](https://i.imgur.com/AREzVBY.png)