Intro to Algo 2022 spring 紙筆作業 1 === ###### tags: `成大演算法春季課程` 請同學在 Word 檔或使用 MD 回答, 需手寫的部分可以選擇打字或是將手寫拍照貼上去, 最後請輸出成 PDF 繳交到 Moodle 請不要交 Word 檔,助教感謝各位同學的配合 :+1: Deadline: **4/5 23:59** ## 第一題 Compare the following time complexity and arrange them in increasing order. **( a )** $4^{\lg ⁡n}$ **( b )** $\log{⁡(n!)}$ **( c )** $2^n$ **( d )** $n!$ **( e )** $n^{\frac{1}{log⁡n}}$ **( f )** $(\log⁡{n})^{log⁡n}$ 1. abefcd 2. ebafcd 3. ebacfd 4. abcdfe ## 第二題 Solve the following recurrences. Explain your answer: **( a )** $T(n) = 2T(\sqrt{n}) + lg\space n$ **( b )** $T(n) = 2T(\frac{n}{2}) + n$ **\( c \)** Use the substitution method to solve $T(n) = 4T(\frac{n}{3}) + n$ ## 第三題 Please prove that $lg(n!)=\theta(nlgn)$ ## 第四題 Give asymptotic tight bound ( $\theta$ ) for question down below. (Assume that $T(n)$ is a constant for sufficiently small $n$) $$ T(n)=3T(\frac{n}{3})+ \frac{n}{\log^2 n} $$ ## 第五題 Use the **recursion-tree method** to give asymptotic tight bound( $\theta$ ) for question down below, and justify your answer. (Assume that $T(n)$ is a constant for sufficiently small n.) (Please draw the tree.) $$ T(n)=T(\frac{n}{3})+T(\frac{n}{4})+n $$