#### 水瓶速度範圍推導 (影片補充 # 基科水瓶速度推導 探求水瓶速度合理的範圍 Steps --- - **用座標旋轉找出質心座標** - **算出力矩** - **旋轉到臨界狀況的旋轉角度** - **代入 W^2 = w0^2 + 2 a s** ###### tags: `基科` `Book` ![](https://i.imgur.com/NUeeYDt.jpg) ![](https://i.imgur.com/OpHjCAl.jpg) ![](https://i.imgur.com/hA2sgvG.jpg) ![](https://i.imgur.com/zwPbDuC.jpg) ![](https://i.imgur.com/pCWzdvQ.jpg) ![](https://i.imgur.com/nflfk2J.jpg) ![](https://i.imgur.com/k8goIId.jpg) ![](https://i.imgur.com/jAx3mdl.jpg) ![](https://i.imgur.com/PT0URiA.jpg) 將上述式子帶入程式 ```python= import matplotlib.pyplot as plt import numpy as np H = 0.21 # 瓶子的高度 f = 2/3 # 水的比例 W = 0.06 # 裝滿水的質量 g = 9.8 # 重力常數 theta = np.linspace(0, np.pi/3, 200) # 水瓶和桌面之見的角度 r = 0.03 # 瓶子底部的半徑 u = 0.25 # 摩擦係數 cot_theta = (1 + np.tan(theta) * u)/(np.tan(theta) - u) xm = ((2/3) * (r**3) * cot_theta - f * W * r)/(f * W) ym = ((1/2) * (r**4) * (cot_theta**2) + (1/4) * (f**2) * (W**2))/ (f * W * r) x_ = np.cos(theta) * xm - np.sin(theta) * ym y_ = np.sin(theta) * xm + np.cos(theta) * ym v_square = 2 * g * x_* (-1) * np.arcsin((x_)/ np.sqrt((x_)**2 + (y_)**2)) * (H**2 + 4 * (r**2)) fig = plt.figure(figsize = (12, 7)) plt.plot(theta, v_square, alpha = 0.4, label ='Velocity vs. theta', color ='red', linestyle ='dashed', linewidth = 2, marker ='D', markersize = 5, markerfacecolor ='blue', markeredgecolor ='blue') plt.title("the range of velocity's square") plt.xlabel('theta (Θ) ') plt.ylabel("velocity's square (m^2/s^2)") plt.grid(alpha =.6, linestyle ='--') plt.legend() plt.show() ``` 而結果如下圖 ![](https://i.imgur.com/eVWDUtU.png) 很奇怪的是,v平方不應是負的?... 那到底問題出在哪?