# 二階數學補充-不等式 ## 複習(?)高中 ### 算幾不等式 > $\cfrac{a+b}2\ge\sqrt{ab}$ 當然也可以更進一步衍伸 > $\cfrac{a+b+c}3\ge\ ^3\sqrt{abc}$ > $\cfrac{a+b+c+d}4\ge\ ^4\sqrt{abcd}$ #### 證明? 二元用$(a-b)^2\ge0$ $2^n$項可以用二元推 其他用$2^n$推 ### 科西不等式 > $(a^2+b^2)(c^2+d^2)\ge(ac+bd)^2$ #### 證明? 痾 向量吧 #### 廣義科西不等式 ![](https://i.imgur.com/ncboVLT.png) 所有變數都要是正實數 > $(a+b+c)(d+e+f)(g+h+i)\ge(^3\sqrt{adg}+^3\sqrt{beh}+^3\sqrt{cfi})^3$ 也可以更多元喔 #### 練習:三角函數 - 若$\theta$為銳角,求$\cfrac{27}{\sin\theta}+\cfrac{64}{\cos\theta}的最小值$ Hint:$27=3^3, 64=4^3$ ### 三角不等式 > $|a|+|b|\ge|a+b|$ 我不會用 ### 偏微分 > 把其他變數都當係數&常數 - $\cfrac{\partial{}}{\partial{y}}(x^2+xy+y^3+1)$ $=\cfrac{\partial{}}{\partial{y}}(y^3+xy+(x^2+1))$ $=3y^2+x$ ### 拉格朗日乘數 直接看例子比較好懂 因為我看不懂原理 ![](https://i.imgur.com/POuJFCB.png) - $\lambda=-y$ $\rightarrow \Phi=-y^3+y$ $\rightarrow-3y^2+1=0$ $\rightarrow y=\pm\sqrt{\cfrac13}$取負 $\Phi=-\cfrac2{3\sqrt3}$ $x^2=-2\lambda y$的條件就不用理ㄌ ## 寫寫考古 ### EC2105 (算幾) ![](https://i.imgur.com/X24y2bh.png) $z=3^{2x}+3^y\ge2\sqrt{3^{2x+y}}=18$ ### EC2111 (線性規劃) ![](https://i.imgur.com/1PwgRK2.png) ![](https://i.imgur.com/eZWDulO.png) ### EC2002 (算幾) ![](https://i.imgur.com/OhwW0Fn.png) ![](https://i.imgur.com/zzIJ4eN.png) ### CS1802 (通靈) ![](https://i.imgur.com/ySwFJl6.png) - ==解1==:通靈難度低 但拿不到滿分 令$k=\cfrac12\times\cfrac34\times\cfrac56\times...\times\cfrac{99}{100}$ $k<\cfrac23\times\cfrac45\times\cfrac67\times...\times\cfrac{100}{101}$ $k^2<\cfrac1{101}$ $\rightarrow$可選ABC - ==解2== 令$k=(\cfrac12\times\cfrac34\times\cfrac56)\times\cfrac78\times...\times\cfrac{99}{100}$ $k<(\cfrac12\times\cfrac34\times\cfrac56)\times\cfrac89\times...\times\cfrac{100}{101}$ $k^2<(\cfrac{1\times3\times5}{2\times4\times6})^2\times\cfrac7{101}$ $k<\cfrac{1\times3\times5}{2\times4\times6}\times\sqrt{\cfrac1{\cfrac{101}7}}=\sqrt{\cfrac1{\cfrac{25856}{175}}}<12$ $\rightarrow$可以選ABCD ### CS1814 (pi^2/6 夾擠) ![](https://i.imgur.com/aShMr4k.png) $1+\sum_{k=2}^n\cfrac1{k^2}<1+\sum_{k=2}^n\cfrac1{k(k-1)}=1+1-\cfrac12+\cfrac13-\cfrac14+...=1+\ln2<2+\cfrac1n$ ### EE1702 (算幾) ![](https://i.imgur.com/rusPPjO.png) ### CS1701 (可微分) ![](https://i.imgur.com/knQuOGI.png) $f(x)=\cos4\theta-4\sin^2\theta$ $f'(x)=-4\sin4\theta-8\sin\theta\cos\theta=0$ $\sin4\theta=-\sin2\theta\rightarrow\theta=\pi/3$ $f(0)=1$ $f(\pi/3)=-7/2$ $f(3\pi/4)=-3$ ### CS1704 (疊合) ![](https://i.imgur.com/XOPBwXs.png) 所求$=\sin\theta+\cos\theta=\sqrt2\sin(\theta+\pi/4)$ (銳角) ### CS1615 (算幾) ![](https://i.imgur.com/Tj6gJMx.png) $a^2+ab+ac+bc=(a+b)(a+c)$ $\cfrac{(a+b)+2(a+c)}2\ge\sqrt{2(a+b)(a+c)}=\sqrt{12+2\sqrt{}20}=\sqrt{10}+\sqrt2$ ### EE1502 (牛頓法&?)* ![](https://i.imgur.com/JXFI1YL.png) ==(a)== $6x^4+11x^3-15x^2+2=0$ $\rightarrow2(\cfrac1x)^4-15(\cfrac1x)^2+11(\cfrac1x)+6=0$ 較易找出$\cfrac1x=2$ $6x^4+11x^3-15x^2+2=(2x-1)(3x^3+7x^2-4x-2)=(2x-1)(3x+1)(x^2+2x-2)=(2x-1)(3x+1)(x-(-1+\sqrt3))(x-(-1-\sqrt3))$ ### CS1312 () ![](https://i.imgur.com/zt5p5AW.png) ### CS1314 (配方) ![](https://i.imgur.com/sftEAU4.png) $A+B-C=2(A+B)$ $\cfrac12A^2-2A+2+\cfrac12B^2-2B+2-4$ $=\cfrac12(A-2)^2+\cfrac12(B-2)^2-4\ge-4$ ### CS1208 (距離) ![](https://i.imgur.com/XIQK3Cb.png) ### CS1209 (二次函數公式解) ![](https://i.imgur.com/RvnzDri.png) ### CS1108 (柯西/微分) ![](https://i.imgur.com/IfwnvLF.png) $((16-4x)+(4x-7))(\cfrac14+1)\ge(\sqrt{4-x}+\sqrt{4x-7})^2$ $9\times\cfrac54\ge(\sqrt{4-x}+\sqrt{4x-7})^2$ $\cfrac{3\sqrt5}2\ge\sqrt{4-x}+\sqrt{4x-7}$ ### CS1110 (二次函數圖形) ![](https://i.imgur.com/DSlLz19.png) ### EE1004 (二次函數極值) ![](https://i.imgur.com/FW3LuXV.png) ### EE1005 (柯西/偏微分) ![](https://i.imgur.com/A15kZb2.png) ### CS1005 (判別式) ![](https://i.imgur.com/Nb9pkFK.png) 令$t=\cfrac{2x+3}{x^2+x+1}\rightarrow tx^2+(t-2)x+(t-3)=0$ $x\in R\rightarrow$判別式$D=(t-2)^2-4t(t-3)=-3t^2+8t+4\ge0$ $\rightarrow(t-\cfrac{8+\sqrt{112}}6)(t-\cfrac{8-\sqrt{112}}6)\le0$ ### CS1006 (二次函數判別式) ![](https://i.imgur.com/qb6OqjB.png) 令$t=\cfrac yx$ $x^2(1+\cfrac yx+(\cfrac yx)^2)=1\rightarrow x^2=\cfrac1{1+t+t^2}$ 令$k=x^2-3xy-2y^2=x^2(1-3t-2t^2)=\cfrac{1-3t-2t^2}{1+t+t^2}$ ### CS1007 (8<9不等式) ![](https://i.imgur.com/Bn4r1Fn.png) - $x>4\rightarrow2(x-2)>x$, 所以將5以上的數盡可能拆成2 - $4=2\times2$, 因此將4拆成2+2不影響(所以也盡可能拆成2)$\rightarrow$最終全剩下2和3 - $3\times3>2\times2\times2$, 因此將3個2換成2個3 ### CS1016 () ![](https://i.imgur.com/uqzuknp.png) ### EE0907 (三角函數) ![](https://i.imgur.com/6dtIxTO.png) ### EE0505 () ![](https://i.imgur.com/XTmrCka.png) ### CS0905 (倒數) ![](https://i.imgur.com/OUIDjf3.png) $\cfrac{21}{10}>\cfrac{x+y}{x}>\cfrac{23}{11}$ $\cfrac{11}{10}>\cfrac{y}{x}>\cfrac{12}{11}$ $\cfrac{132}{120}>\cfrac{y}{x}>\cfrac{132}{121}$ ### CS0912 () ![](https://i.imgur.com/TgLbYZL.png) ### CS0915 () ![](https://i.imgur.com/b4yGVKk.png) ### CS0916 () ![](https://i.imgur.com/FlhaoPs.png) ### CS0805 () ![](https://i.imgur.com/8zIS4Mn.png) ### CS0806 () ![](https://i.imgur.com/XxkZGmE.png) ### CS0807 () ![](https://i.imgur.com/lE5Bg7o.png) ### CS0706 (柯西) ![](https://i.imgur.com/nlEIn1r.png) ### CS0609 (微分練習?) ![](https://i.imgur.com/kAtDt8V.png) ### CS0203 () ![](https://i.imgur.com/MfK0xsx.png) ### CS0213 (畫圖暴力解?) ![](https://i.imgur.com/R5SytZb.png) ### CS0214 () ![](https://i.imgur.com/irdn5ba.png) ###### tags: `電資二階` `Cosmos`