# 二階數學補充-三角函數 東西很雜 寫到什麼講什麼 可能還有一點幾何 ## 怪東西 ### 和差化積/積化和差 以下只推導第一條 後面皆可用類似方法推得 - $\sin\alpha\cos\beta$ $=\cfrac{2\sin\alpha\cos\beta}2$ $=\cfrac{\sin\alpha\cos\beta+\cos\alpha\sin\beta+\sin\alpha\cos\beta-\cos\alpha\sin\beta}2$ $=\cfrac{\sin(\alpha+\beta)+\sin(\alpha-\beta)}2$ - $\cos\alpha\sin\beta$ $=\cfrac{\sin(\alpha+\beta)-\sin(\alpha-\beta)}2$ - $\cos\alpha\cos\beta$ $=\cfrac{\cos(\alpha+\beta)+\cos(\alpha-\beta)}2$ - $\sin\alpha\sin\beta$ $=\cfrac{-\cos(\alpha+\beta)+\cos(\alpha-\beta)}2$ ## 寫寫考古 ### EC2013-1 (複數+歐拉公式) ![](https://i.imgur.com/dStiHe3.png) 不想學那麼多請快轉[這裡](https://hackmd.io/4ystU6tlQy6Px79KeaXBOg#EC2013-2-%E7%A9%8D%E5%8C%96%E5%92%8C%E5%B7%AE) 我在自己的解析上寫了這麼一句話 > 請使用公式 $\sum^{n}_{k=0}\ \cos(kx)=\cfrac{1}{2}+\cfrac{\sin(\cfrac{2n+1}{2}x)}{2\sin(\cfrac{x}{2})}$ 以下將嘗試證明 #### 代號與性質 - $Re(z)$:複數$z$的實部 - 令$z=a+bi$, 則$\bar{z}=a-bi$ - $z\bar{z}=|z|^2$ - $\cfrac{z_1}{z_2}=\cfrac{ac-bd+i(bc-ad)}{|z_2|^2}$ - $e^{ix}=\cos(x)+i\sin(x)\leftarrow$歐拉公式(就是那個$e^{i\pi}=-1$的來源) - $e^{ix}-e^{-ix}$ $=(\ \cos(x)+i\sin(x)\ )-(\ \cos(-x)+i\sin(-x)\ )$ $=(\ \cos(x)+i\sin(x)\ )-(\ \cos(x)-i\sin(x)\ )$ $=2i\sin(x)$ - 積化和差:$2\sin A\cos B=\sin(A+B)-\sin(A-B)$ #### 正式開始? $\sum^{n}_{k=0}\ \cos(kx)$ $=Re(\ \sum^{n}_{k=0}\ \cos(kx)\ )$ $=Re(\ \sum^{n}_{k=0}\ \cos(kx)+i\sin(kx)\ )$ $=Re(\ \sum^{n}_{k=0}\ e^{ixk}\ )$ $=Re(\ 1+e^{ix}+e^{2ix}+...+e^{nix}\ )$ $=Re(\ \cfrac{e^{(n+1)ix}-1}{e^{ix}-1}\ )$ $=Re(\ \cfrac{e^{\cfrac{(n+1)ix}{2}}(e^{\cfrac{(n+1)ix}{2}}-e^{-\cfrac{(n+1)ix}{2}})}{e^{\cfrac{ix}{2}}(e^{\cfrac{ix}{2}}-e^{-\cfrac{ix}{2}})}\ )$ $=Re(\cfrac{e^{\cfrac{(n+1)ix}{2}}}{e^{\cfrac{ix}{2}}}\times\cfrac{2i\sin(\cfrac{n+1}{2}x)}{2i\sin(\cfrac{x}{2})})$ $=Re(e^{\cfrac{nix}{2}}\times\cfrac{\sin(\cfrac{n+1}{2}x)}{\sin(\cfrac{x}{2})})$ $=Re(\ (\cos(\cfrac{nx}{2})+i\sin(\cfrac{nx}{2})\ )\times\cfrac{\sin(\cfrac{n+1}{2}x)}{\sin(\cfrac{x}{2})})$ $=\cos(\cfrac{nx}{2})\times\cfrac{\sin(\cfrac{n+1}{2}x)}{\sin(\cfrac{x}{2})}$ $=\cfrac{\sin(\cfrac{2n+1}{2}x)+\sin(\cfrac{x}{2})}{2\sin(\cfrac{x}{2})}$ $=\cfrac{1}{2}+\cfrac{\sin(\cfrac{2n+1}{2}x)}{2\sin(\cfrac{x}{2})}$ 終於寫完了 這樣就可以代公式了 注意原題是從$k=1$開始 #### 套公式 $n=100, x=\cfrac{4\pi}{199}$代入 $S_{100}(\cfrac{4\pi}{199})=\cos(\cfrac{4\pi}{199})+\cos(2\times\cfrac{4\pi}{199})+...+\cos(100\times\cfrac{4\pi}{199})$ $=\cos(0)+\cos(\cfrac{4\pi}{199})+\cos(2\times\cfrac{4\pi}{199})+...+\cos(100\times\cfrac{4\pi}{199})-\cos(0)$ $=\cfrac{1}{2}+\cfrac{\sin(\cfrac{201}{2}\times \cfrac{4\pi}{199})}{2\sin(\cfrac{1}{2}\times\cfrac{4\pi}{199})}-1$ $=\cfrac{\sin(\cfrac{402\pi}{199})}{2\sin(\cfrac{2\pi}{199})}-\cfrac{1}{2}$ $=\cfrac{\sin(\cfrac{4\pi}{199})}{2\sin(\cfrac{2\pi}{199})}-\cfrac{1}{2}$ $=\cfrac{2\sin(\cfrac{2\pi}{199})\cos(\cfrac{2\pi}{199})}{2\sin(\cfrac{2\pi}{199})}-\cfrac{1}{2}$ $=\cos(\cfrac{2\pi}{199})-\cfrac{1}{2}$ 把$\pm\cfrac{2\pi}{199}$的同位角列一列就結束ㄌ ### EC2013-2 (積化和差by范振祐) 令$A=S_{100}(\cfrac{4\pi}{199})=\cos(\cfrac{4\pi}{199})+\cos(2\times\cfrac{4\pi}{199})+...+\cos(100\times\cfrac{4\pi}{199})$ $2A\sin(\cfrac{2\pi}{199})$ $=2\sin(\cfrac{2\pi}{199})\cos(\cfrac{4\pi}{199})+2\sin(\cfrac{2\pi}{199})\cos(2\times\cfrac{4\pi}{199})+...$ $=[\sin(\cfrac{6\pi}{199})+\sin(\cfrac{-2\pi}{199})]+[\sin(\cfrac{10\pi}{199})+\sin(\cfrac{-6\pi}{199})]+...$ $=\sin(\cfrac{-2\pi}{199})+\sin(\cfrac{402\pi}{199})$ $=\sin(\cfrac{2\pi}{199})[-1+2\cos(\cfrac{2\pi}{199})]$ ### EC2014 (棣美弗定理) ![](https://i.imgur.com/CwnNbLf.png) $C_1=-2=2(\cos\theta+i\sin\theta)\rightarrow \theta=\pi$ $C_2=2^\cfrac{1}{2}(\cos\cfrac{\theta}{2}+i\sin\cfrac{\theta}{2})$ $C_3=2^\cfrac{1}{4}(\cos\cfrac{\theta}{4}+i\sin\cfrac{\theta}{4})$ ... $\prod C_i=(2\times2^\cfrac{1}{2}\times2^\cfrac{1}{4}\times...)\times(\cos\theta+i\sin\theta)\times(\cos\cfrac{\theta}{2}+i\sin\cfrac{\theta}{2})\times(\cos\cfrac{\theta}{4}+i\sin\cfrac{\theta}{4})\times...$ $=2^2\times(\cos2\theta+i\sin2\theta)$ $=4$ ### EC2015 (複數平面 單位圓) ![](https://hackmd.io/_uploads/ryfKrXDE2.png) ![](https://hackmd.io/_uploads/SyF3PmD42.png) ### EC1904 (和角) ![](https://hackmd.io/_uploads/Ske5HQP42.png) ### EC1907 (疊合/斜率) ![](https://hackmd.io/_uploads/rJ29SQwNh.png) ![](https://hackmd.io/_uploads/rkD0vmv4n.png) ![](https://hackmd.io/_uploads/H1U1OXwVn.png) ### EC1908 (極式) ![](https://hackmd.io/_uploads/HJy2BXPNn.png) ![](https://hackmd.io/_uploads/BkWlO7w42.png) ### EC1910 (函數圖形) ![](https://hackmd.io/_uploads/rybRS7PE2.png) ![](https://hackmd.io/_uploads/BJ0ld7DVn.png) ### EE1801 (複數平面 單位圓) ![](https://hackmd.io/_uploads/rkxyIQPVh.png) ![](https://hackmd.io/_uploads/BJNEdXDV2.png) ### EE1803 (根與係數) ![](https://hackmd.io/_uploads/BJpJUXwE2.png) ![](https://hackmd.io/_uploads/ry9GOXD42.png) ### CS1803 (tan和角) \*經典題 ![](https://hackmd.io/_uploads/Skzzpdw42.png) 構造一個$\sqrt5,\sqrt5,\sqrt{10}$的等腰直角三角形 ### CS1813 (和差化積) ![](https://hackmd.io/_uploads/HJyNaOwE3.png) ==(1)== 和差化積 或22.5度角硬炸 ==(2)== 原式$=2(\cos^8\cfrac\pi8+\sin^8\cfrac\pi8)$ ### CS1701 (微分) ![](https://hackmd.io/_uploads/Bkgw6uPEh.png) ### CS1704 (疊合) ![](https://hackmd.io/_uploads/Hy03AOvE3.png) ### CS1603 (三角函數定義) ![](https://hackmd.io/_uploads/SklRAODEh.png) ### CS1616 (正弦定理)^ ![](https://hackmd.io/_uploads/rkSJkKDN2.png) ### CS1617 (積化和差) ![](https://hackmd.io/_uploads/HJxeyFwNh.png) ### EE1306 (複數平面 極式) ![](https://hackmd.io/_uploads/HJgHR2dvVh.png) ### CS1304 (三角函數定義) ![](https://hackmd.io/_uploads/BJDbJYwNh.png) ### CS1308 (等比級數) ![](https://hackmd.io/_uploads/HybQktwNh.png) ### EE1205 (平方關係) ![](https://hackmd.io/_uploads/SkdW87DNh.png) ### EE1208 (球)* ![](https://hackmd.io/_uploads/S1-EIXw43.png) ### CS1202 (怪級數)* ![](https://hackmd.io/_uploads/rkxlqtwVn.png) ### EE1101 (和差化積) ![](https://hackmd.io/_uploads/BJ2DIQvE2.png) ### CS1114 (疊合?) ![](https://hackmd.io/_uploads/Bkt4kKPVn.png) ### CS1118 (幾何)* ![](https://hackmd.io/_uploads/BktOJtPV2.png) ### EE1002 (?)* ![](https://hackmd.io/_uploads/r1tO8QPVh.png) ### EE1008 (-i的立方根) ![](https://hackmd.io/_uploads/Sy0JTdP42.png) ### CS1012 (?)* ![](https://hackmd.io/_uploads/S1nhJFDNn.png) ### CS1013 (和差倍角公式) ![](https://hackmd.io/_uploads/ByfC1FvEh.png) ### CS0802 (疊合) ![](https://hackmd.io/_uploads/rJSJrFPV3.png) ### CS0803 (疊合/斜率) ![](https://hackmd.io/_uploads/rkLlHtDVn.png) ### CS0814 (tan和角) ![](https://hackmd.io/_uploads/ryRGDYPVh.png) 令$\tan\alpha=\cfrac13,\tan\beta=\cfrac15,\tan\gamma=\cfrac17,\tan\phi=\cfrac18$ $\tan(\alpha+\beta)=\cfrac{\cfrac13+\cfrac15}{1-\cfrac13\cfrac15}=\cfrac47$ $\tan(\gamma+\phi)=\cfrac{\cfrac17+\cfrac18}{1-\cfrac17\cfrac18}=\cfrac3{11}$ $\tan(\alpha+\beta+\gamma+\phi)$ $=\cfrac{\tan(\alpha+\beta)+\tan(\gamma+\phi)}{1-\tan(\alpha+\beta)\tan(\gamma+\phi)}$ $=\cfrac{\cfrac47+\cfrac3{11}}{1-\cfrac47\cfrac3{11}}=\cfrac{65}{65}=1$ $\rightarrow \alpha+\beta+\gamma+\phi=\pi/4$ ### CS0816 (怪級數) ![](https://hackmd.io/_uploads/rJiXDFPE3.png) ### CS0820 (根與係數) ![](https://hackmd.io/_uploads/S1j4wYvVn.png) ### EE0705 (觀察化簡) ![](https://hackmd.io/_uploads/S1-j8QvV2.png) ### EE0708 (怪級數)* ![](https://hackmd.io/_uploads/rJrq87v43.png) ### CS0704 (?)* ![](https://hackmd.io/_uploads/rkcSwFD43.png) ### CS0604 (等比級數)* ![](https://hackmd.io/_uploads/S1_wwYPVn.png) ### CS0606 (怪極限) ![](https://hackmd.io/_uploads/Bk8uvFwVn.png) $=\lim(\cos\cfrac x{2}\cos\cfrac x{2^2}...\cos\cfrac x{2^n})\sin\cfrac x{2^n}/\sin\cfrac x{2^n}$ $=\lim\cfrac{\sin x}{2^n\sin\cfrac x{2^n}}$ $=\sin x\times\lim\cfrac{(\cfrac12)^n}{\sin\cfrac x{2^n}}$ $=\sin x\times\lim\cfrac{[(\cfrac12)^n]'}{\cos\cfrac x{2^n}\times(\cfrac x{2^n})'}$ $=\sin x\times\lim\cfrac1{\cos\cfrac x{2^n}\times x}$ $=\cfrac{\sin x}{x}$ ### CS0612 (週期) ![](https://hackmd.io/_uploads/ryfYPFPEh.png) ### CS0613 (函數圖形)* ![](https://hackmd.io/_uploads/BJitvtwEh.png) ### EE0501 (平方關係 倍角公式) ![](https://hackmd.io/_uploads/B1LnUQPNn.png) $y=2\sin^2x+4\sin x\cos x-2\cos^2x+4$ $=2\sin2x-2\cos2x+4$ $=2\sqrt2\sin(2x-\cfrac{\pi}4)+4$ ### CS0501 (複數平面 極式) ![](https://hackmd.io/_uploads/rJwqwYD4n.png) ### EE0406 (?)* ![](https://hackmd.io/_uploads/rJK68mwVh.png) ### CS0202 (複數平面 單位圓) ![](https://hackmd.io/_uploads/r1FivYD4n.png) $=-\cos\cfrac{2\pi}{11}-\cos\cfrac{4\pi}{11}-\cos\cfrac{6\pi}{11}-\cos\cfrac{8\pi}{11}-\cos\cfrac{10\pi}{11}$ $=\cfrac12(-\cos\cfrac{2\pi}{11}-\cos\cfrac{4\pi}{11}-\cos\cfrac{6\pi}{11}-\cos\cfrac{8\pi}{11}-\cos\cfrac{10\pi}{11}-\cos\cfrac{12\pi}{11}-\cos\cfrac{14\pi}{11}-\cos\cfrac{16\pi}{11}-\cos\cfrac{18\pi}{11}-\cos\cfrac{20\pi}{11})$ $=\cfrac12(-\cos\cfrac{2\pi}{11}-\cos\cfrac{4\pi}{11}-\cos\cfrac{6\pi}{11}-\cos\cfrac{8\pi}{11}-\cos\cfrac{10\pi}{11}-\cos\cfrac{12\pi}{11}-\cos\cfrac{14\pi}{11}-\cos\cfrac{16\pi}{11}-\cos\cfrac{18\pi}{11}-\cos\cfrac{20\pi}{11}-\cos\cfrac{22\pi}{11})+\cfrac12$ $=\cfrac12$ ###### tags: `電資二階` `Cosmos`