# Introduction to Computational Logic Student: B07902108 翁祖毅 ### 1. $\phi U \psi \equiv \psi R(\phi \lor \psi) \land F \psi$ $\phi U \psi$ $\equiv \phi W\psi \land F \psi$ $\equiv \psi R(\phi \lor \psi) \land F \psi$ ### 2. $\phi W \psi \equiv \psi R(\phi \lor \psi)$ Let $\pi$ be a path $s_0 \rightarrow s_1 \rightarrow$ ... 1. "only if" direction * $\phi W \psi$ * Case 1: $\pi = \phi \rightarrow \phi \rightarrow$ ... $\implies \psi R \phi \equiv \psi R (\phi \lor \psi)$ * Case 2: $\pi = \phi \rightarrow \phi \rightarrow$ ... $\rightarrow \psi$ $\implies \phi \lor \psi$ is always true and $\psi$ is true at some point $\implies \psi R (\phi \lor \psi)$ 2. "if" direction * $\psi R(\phi \lor \psi)$ * $\pi = \phi \lor \psi \rightarrow$ ... $\rightarrow \phi \lor \psi$ * Case 1: $\psi$ is always false $\implies \phi$ is always true $\implies \phi W \psi$ * Case 2: $F \psi$ $\implies \phi W \psi$ (by definition) ### 3. $M,s \vDash AF(\phi \lor \psi)$ but $M \nvDash AF \phi \lor AF\psi$ ![](https://i.imgur.com/vrReMju.png) ### 4. Express the following statement in $CTL^∗$: “the event p is never true between the events q and r on a path.” * $AG(q \implies \neg EF (p \land EFr)) \land AG(r \implies \neg EF (p \land EFq))$ ### 5. $AGFp$ and $AGEFp$ specify different properties. ![](https://i.imgur.com/QOznUti.png) * $AGFp$: 每條路徑最終一定會到達右邊的 $p$。 * 假設有某條路徑永遠在 $\neg p$ 繞,就會不符合 $AGFp$ 的定義。