Machine Learning: From Theory To Application 機器學習筆記 === - [Preface](/HZy0acV9SICnLDyQhp0QfQ) - [0-1: Introduction to Machine Learning](/6AboF9JBRSiuN622LWxstA) - [0-2: Optimization](/-QqfUs3pT3aQ1HWMirlfrw) Chapter 1: Introduction to Statistical Learning Theory ------ - [1-1: Learning Framework for Supervised Learning](/eYKmDbrPQyalEEkP5e0w_Q) - [1-2: Generalization: PAC learning](/BzMW5LK3Q0mOXvhJYPWD6w) - [1-3: Growth Function and VC Dimension](/a29c0H1bTSS0bfuqrOEQRw) - [1-4: Rademacher Complexity](/oox2ztRmQHaB3F3k3khgRA) Chapter 2: Classification and Regression ------ - [2-1: Linear Classifiers](/qaPNLkPARgGyXkQ_3gFwdw) - [2-2: Support Vector Machine (SVM)](/Oxbn21k8TqayBpojUU0wnQ) Chapter 3: Generative learning ------ Chapter 4: Introduction to Deep Learning ------ Chapter 5: Unsupervised Learning ------ Clustering Dimensionality Reduction Chapter 6: Reinforcement Learning ------
{"metaMigratedAt":"2023-06-17T10:44:34.118Z","metaMigratedFrom":"Content","title":"Machine Learning: From Theory To Application 機器學習筆記","breaks":false,"contributors":"[{\"id\":\"5bbbf256-bf82-4ddd-b758-9c00173db409\",\"add\":1834,\"del\":923}]"}
Expand menu