{%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} # Kernel and range of a linear function ## Problem Recall that $\mathcal{P}_d$ is the vector space of all polynomials of degree at most $d$. Let $f:\mathcal{P}_2\rightarrow\mathcal{P}_2$ be a linear function defined by $p\mapsto x\cdot p'$, where $p'$ is the derivative of $p$. Find $\ker(f)$ and $\range(f)$. ## Thought As always, we should start with the definition. Recall that $$ \begin{aligned} \ker(f) &= \{p\in\mathcal{P}_3: f(p) = 0\} \text{ and } \\ \range(f) &= \{f(p): p\in\mathcal{P}_3\}. \end{aligned} $$ For example, $1$ is an element in $\ker(f)$ since $f(1) = x\cdot (1)' = 0$, and $f(x^2) = x\cdot (x^2)' = x\cdot (2x) = 2x^2$ is an element in $\range(f)$. We may rely on the matrix representation to find the kernel and the range. ## Sample answer Let $\alpha = \{1, x, x^2\}$ be a basis of $\mathcal{P}_2$. By direct computation, we have $$ \begin{aligned} f(1) &= 0 + 0x + 0x^2, \\ f(x) &= 0 + 1x + 0x^2, \\ f(x^2) &= 0 + 0x + 2x^2. \end{aligned} $$ Therefore, $$ A = [f]_\alpha^\alpha = \begin{bmatrix} | & | & | \\ [f(1)]_\alpha & [f(x)]_\alpha & [f(x^2)]_\alpha \\ | & | & | \\ \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}. $$ Using the techniques in [How to find a basis of the kernel?](https://hackmd.io/@jephianlin/SyPyuWrXT) and [How to find a basis of the column space?](https://hackmd.io/@jephianlin/HJs0C-rQ6), we know that $$ \begin{aligned} \ker(A) &= \left\{\begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix}: x\in\mathbb{R}\right\} = \vspan(\{\be_1\}) \text{ and} \\ \Col(A) &= \left\{\begin{bmatrix} 0 \\ y \\ z \end{bmatrix}: y,z\in\mathbb{R}\right\} = \vspan(\{\be_2, \be_3\}). \end{aligned} $$ Since the mapping $p\mapsto [p]_\alpha$ is sending $1\mapsto\be_1$, $x\mapsto\be_2$, $x^2\mapsto\be_3$. We may translate the previous equalities into $$ \begin{aligned} \ker(f) &= \vspan(\{1\}) \text{ and} \\ \range(f) &= \vspan(\{x, x^2\}). \end{aligned} $$ *This note can be found at Course website > Learning resources.*