graph learn {
NN [label="神經網路"];
SL [label="統計學習"];
LA [label="線性代數"];
Calc [label="微積分"];
P [label="機率"];
S [label="統計"];
Alg [label="演算法"];
NN -- {LA, Calc, Alg};
SL -- {LA, Calc, P, S, Alg};
}
graph NN_graph {
NN [label="神經網路"];
FF [label="Feedforward"];
BP [label="Backpropagation"];
NN -- {FF, BP};
matrix [label="矩陣運算"];
vtize [label="向量化計算"];
grad [label="梯度"];
taylor [label="泰勒展開"];
FF -- {matrix, vtize};
BP -- {matrix, vtize, grad, taylor};
}
graph RF_graph {
RF [label="隨機森林"];
par [label="分割"];
bag [label="bagging"];
RF -- {par, bag};
LG [label="線性幾何"];
ent [label="資訊熵"];
sample [label="抽樣"];
par -- {LG, ent};
bag -- {sample};
}
graph PCA_graph {
PCA [label="主成份分析 PCA"];
varmtx [label="變異數矩陣"];
PC [label="主成份萃取"];
PCA -- {varmtx, PC};
LG [label="線性幾何"];
mean [label="平均值"];
var [label="變異數"];
SVD [label="奇異值分解 SVD"];
eig [label="對角化"];
varmtx -- {mean, var, LG};
PC -- {LG, var, SVD};
SVD -- eig;
}
以數學基礎出發,學習關於人工智慧應用所需的原理及計算機程式運用,培養在人工智慧應用上遇到不同的問題時,能提供解決問題方法或開發新人工智慧技術。
graph core {
layout=twopi;
ranksep=2.5;
AIMATH [label="AI & Math"];
Python [label="Python 與機器學習之理論實現"];
AI [label="人工智慧原理"];
LA [label="線性代數"];
Calc [label="微積分"];
P [label="機率"];
S [label="統計"];
Alg [label="計算機程式"];
AIMATH -- {LA, Calc, P, S, Alg, AI, Python};
}
如果你
人工智慧與數學學程歡迎你!