{%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} # Is this function surjective? ## Problem Let $$ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}\text{ and } B = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix}. $$ Define funcitons $f_A: \mathbb{R}^3\rightarrow\mathbb{R}^4$ by $\bx\mapsto A\bx$ and $f_B: \mathbb{R}^3\rightarrow\mathbb{R}^2$ by $\bx\mapsto B\bx$. For each of $f_A$ and $f_B$, determine if it is surjective. ## Thought Let's recall the definition. To say a function $f: X\rightarrow Y$ is surjective, we have to show that for any $y\in Y$, there is an element $x\in X$ such that $f(x) = y$. ## Sample answer First we consider $f_A$. Any vector $\by\in\mathbb{R}^4$ has the form $$ \by = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}. $$ We may try to solve the equation $A\bx = \by$ by the augmented matrix $$ \left[\begin{array}{ccc|c} 1 & 1 & 1 & a \\ 1 & 1 & 2 & b \\ 1 & 2 & 2 & c \\ 2 & 2 & 2 & d \end{array}\right], $$ which lead to the reduced echelon form $$ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2a-c \\ 0 & 1 & 0 & c-b \\ 0 & 0 & 1 & b-a \\ 0 & 0 & 0 & d-2a \end{array}\right]. $$ Thus, the equation has no solution whenever $d - 2a\neq 0$. For example, when $$ \by = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, $$ it is impossible to find $\bx\in\mathbb{R}^3$ such that $f_A(\bx) = \by$, so $f_A$ is not surjective. For $f_B$, we may do the same. Any $\by\in\mathbb{R}^2$ has the form $$ \by = \begin{bmatrix} a \\ b \end{bmatrix}. $$ Thus, the augmented matrix and its reduced echelon form are $$ \left[\begin{array}{ccc|c} 1 & 1 & 2 & a \\ 1 & 2 & 2 & b \end{array}\right]\text{ and } \left[\begin{array}{ccc|c} 1 & 0 & 2 & 2a-b \\ 0 & 1 & 0 & b-a \end{array}\right]. $$ Thus, for any such $\by\in\mathbb{R}^2$, there is $\bx\in\mathbb{R}^3$ such that $f_B(\bx) = \by$. To be more precise, we may choose $$ \bx = \begin{bmatrix} 2a - b \\ b - a \\ 0 \end{bmatrix}. $$ ## Note Let $A$ be an $m\times n$ matrix and define $f_A: \mathbb{R}^n\rightarrow\mathbb{R}^m$ by $\bx\mapsto A\bx$. Then you may show that the following are equivalent: 1. $f_A$ is surjective. 2. $\rank(A) = m$. Think about why they mean the same thing. *This note can be found at Course website > Learning resources.*