# L13 ###### tags: `微分方程特論` ###### date: `3 June 2020` ## Recitation ![](https://i.imgur.com/QuNq4pp.png) ## Review of §8.5 ### Example :film_frames: https://reurl.cc/lVOVdj 00:00 (Insulated Endpoint Conditions, p.594) $\left\{\begin{array}{l}u_t=ku_{xx},\qquad(0<x<L, t>0);\\u_x(0,t)=u_x(L,t)=0\\u(x,0)=f(x)\end{array}\right.\tag{1}$ ![](https://i.imgur.com/hNb4mGE.png) #### Solution 1. Let $u(x,t)=X(x)T(t)$. Then the equation becomes $XT'=kX''T$ $\implies\dfrac{X''}{X}=\dfrac{T'}{kT}=-\lambda$ $\implies X''+\lambda X=0\quad$ and $\quad T'+k\lambda T=0$. 2. Apply B.C.s: - $u_x(0,t)=0\implies X'(0)=0$ - $u_x(L,t)=0\implies X'(L)=0$ 3. Solve B.V.P.s: - $X''+\lambda X=0;\ X'(0)=0,\quad X'(L)=0\implies$ - e-val.: $\lambda_n=\left(\dfrac{n\pi}{L}\right)^2,\quad n=0,1,2,3,\ldots$, - e-func.: $X_n(x)=\cos\left(\dfrac{n\pi x}{L}\right),\quad n=0,1,2,3,\ldots$. - If $\lambda\neq 0$, then $T_n'+k\left(\dfrac{n\pi}{L}\right)T_n=0$ $\implies T_n(t)=C_ne^{-k(n\pi /L)^2t},\quad n=0,1,2,3,\ldots$. - If $\lambda=0$, then $T_0'+0T=0\implies T_0(t)\equiv \dfrac{C_0}{2}$ (constant). Thus, the gen. sol is $$\begin{align}u(x,t)&=\dfrac{C_0\kappa_0}{2}+\sum^\infty_{n=1}\kappa_nX_n(x)T_n(t)\\&=\boxed{ \dfrac{c_0}{2}+\sum^\infty_{n=1} c_n\cos\left(\dfrac{n\pi x}{L}\right)e^{-k(n\pi /L)^2t}},\end{align}$$ where $c_n\equiv\kappa_nC_n$ for $n=0,1,2,\ldots$. 4. Apply I.C.: $\displaystyle u(x,0)=f(x)=\dfrac{c_0}{2}+\sum^\infty_{n=0}c_n \cos\left(\dfrac{n\pi x}{L}\right)$ (Fourier cosine series) with coefficients being $$ \boxed{c_0=\dfrac{2}{L}\int^{L}_0 \cos\left(\dfrac{n\pi x}{L}\right)\text{d}x},$$ and $$\boxed{c_n=\dfrac{2}{L}\int^{L}_0 f(x)\cos\left(\dfrac{n\pi x}{L}\right)\text{d}x}.\ \blacksquare$$ --- ### Example (extra) :film_frames: https://reurl.cc/lVOVdj 15:33 $u_t=ku_{xx}, (0<x<50, t>0);$ $u_x(0,t)=u_x(50,t)=0,\ u(x,0)=x.$ --- ## §8.7 Laplace Equation :film_frames: https://reurl.cc/lVOVdj 16:56 e.g. $\nabla^2 u\equiv u_{xx}+u_{yy}=0\tag{2}$ - thin plate, $u$: temp. -- heat eqn. $\nabla^2 u=u_{t}$ - thin plate, **steady state**. $u_t=0$ so that $\nabla^2 u=0$ ### Example (Dirichlet's Problem) :film_frames: https://reurl.cc/lVOVdj 19:35 (p.612) Consider a rectangular plate. The temperature on the plate $u(x,t)$ satisfies $$\left\{\begin{array}{ll}u_{xx}+u_{yy}=0,&(0<x<a,\quad 0<y<b);\\u(x,b)=u(a,y)=u(0,y)=0&(\text{3 edges of homog. cond.}),\\u(x,0)=f(x)&(\text{1 edge of non-homog. cond.}).\end{array}\right.\tag{3}$$ #### Solution :film_frames: https://reurl.cc/lVOVdj 20:20 1. Let $u(x,y)=X(x)Y(y)$ The PDE in Eqn. (3) becomes $X''Y+XY''=0\implies\dfrac{X''}{X}=-\dfrac{Y''}{Y}=-\lambda\implies$ - $X''+\lambda X=0$ - $Y''-\lambda Y=0$ 2. Apply B.C.s on $y$: - $u(0,y)=0\implies X(0)=0$ - $u(a,y)=0\implies X(a)=0$ 3. Solve B.V.P.s: - $X''+\lambda X=0;\ X(0)=0,\ X(a)=0\implies$ - e-val.: $\lambda_n=\left(\dfrac{n\pi}{a}\right)^2,\quad n=1,2,3\ldots$ - e-func.: $X_n(x)=\sin\left(\dfrac{n\pi x}{a}\right),\quad n=1,2,3\ldots$ - $Y_n''-\left(\dfrac{n\pi}{a}\right)^2 Y_n=0\implies Y_n(y)=C_ne^{n\pi y/a}+D_ne^{-n\pi y/a},\quad n=1,2,3\ldots$ Thus a gen. sol of the PDE in Eqn. (3) is $$\begin{align}u(x,y)&=\sum^\infty_{n=1}\kappa_nX_n(x)Y_n(y)\\&=\boxed{\sum^\infty_{n=1}\sin\left(\dfrac{n\pi x}{a}\right)\left[A_ne^{n\pi y/a}+B_ne^{-n\pi y/a}\right]},\tag{4}\end{align}$$ where $A\equiv n=\kappa_nC_n,\ B_n\equiv \kappa_nD_n$ for $n=1,2,3,\ldots.$ - :film_frames: https://reurl.cc/lVOVdj 33:23 There's another solution set: *hyperbolic functions* $\sinh(n\pi y/a)$ and $\cosh(n\pi y/a)$ ![](https://i.imgur.com/W3BpZoY.png =300x) 4. Apply B.C.s on $x$: :film_frames: https://reurl.cc/lVOVdj 36:05 - $\displaystyle u(x,b)=0\implies \sum^\infty_{n=1}\sin\left(\dfrac{n\pi x}{a}\right)\left[A_ne^{n\pi b/a}+B_ne^{-n\pi b/a}\right]=0$. Since $\{\sin (n\pi x/a)\}^{\infty}_{n=1}$ are orthogonal, $A_ne^{n\pi b/a}+B_ne^{-n\pi b/a}=0\implies \boxed{B_n=-\dfrac{e^{n\pi b/a}}{e^{-n\pi b/a}}A_n}.\tag{5}$ ![](https://i.imgur.com/lbnQ62u.png =200x) - $\displaystyle u(x,0)=f(x)\implies \sum^\infty_{n=1}(A_n+B_n)\sin\dfrac{n\pi x}{a}=f(x)$ $A_n+B_n$ are the coefficients of Fourier sine series of $u$: $$\boxed{A_n+B_n=\dfrac{2}{a}\int^a_0f(x)\sin(n\pi x/a)\text{d}x}\tag{6}$$ 5. Solve $A_n$ and $B_n$ with Eqs. (5) and (6). $\blacksquare$ --- ### Example (an semi-infinite strip) :film_frames: https://reurl.cc/lVOVdj 43:21 $\left\{\begin{array}{l} u_{xx}+u_{yy}=0,&(0<x<\infty,\quad 0<y<b);\\ u(x,b)=u(x,0)=0,&(0<x<\infty),\\ u(x,t)\text{ is bounded as }x\to+\infty,\\ u(0,y)=g(y).\end{array}\right.\tag{7}$ #### Solution :film_frames: https://reurl.cc/kdWd3n 00:25 1. Let $u(x,y)=X(x)Y(y)$ The PDE becomes $X''Y+XY''=0\implies-\dfrac{X''}{X}=\dfrac{Y''}{Y}=-\lambda\implies$ - $X''-\lambda X=0$, and - $Y''+\lambda Y=0$. 2. Apply B.C.s on $y$: - $u(x,0)=0\implies Y(0)=0$ - $u(x,b)=0\implies Y(b)=0$ 3. Solve B.V.P.s: - $Y''+\lambda Y=0;\ Y(0)=0,\ Y(b)=0\implies$ - e-val.: $\lambda_n=\left(\dfrac{n\pi}{b}\right)^2,\quad n=1,2,3\ldots$ - e-func.: $Y_n(y)=\sin\left(\dfrac{n\pi y}{b}\right),\quad n=1,2,3\ldots$ - $X_n''-\left(\dfrac{n\pi}{b}\right)^2 X_n=0\implies X_n(x)=C_ne^{n\pi x/b}+D_ne^{-n\pi x/b}$ 4. Apply B.C.s on $x$: :film_frames: https://reurl.cc/kdWd3n 06:02 - Because $u(x,t)$ is bounded as $x\to+\infty$, $C_n=0$ for all $n$. Thus a gen. sol. of PDE is $$u(x,y)=\sum^\infty_{n=1}\kappa_nX_n(x)Y_n(y)=\boxed{\sum^\infty_{n=1} B_ne^{-n\pi x/b}\sin\left(\dfrac{n\pi y}{b}\right)},$$ where $B_n\equiv \kappa_nD_n$ for $n=1,2,3,\ldots.$ - $\displaystyle u(0,y)=\sum^\infty_{n=1}B_n\sin\left(\dfrac{n\pi y}{b}\right)=g(y)$, with coefficients being $$B_n=\boxed{\dfrac{2}{b}\int^b_0 g(y)\sin\left(\dfrac{n\pi y}{b}\right)\text{d}y}.\ \blacksquare$$ --- ### Laplace eqn. in polar coord. :film_frames: https://reurl.cc/kdWd3n 11:41 Laplacian $\nabla^2u=u_{rr}+\dfrac{1}{r}u_r +\dfrac{1}{r^2}u_{\theta\theta}\tag{8}$ Wave eqn. $\alpha\left(u_{rr}+\dfrac{1}{r}u_r +\dfrac{1}{r^2}u_{\theta\theta}\right)=u_{tt}\tag*{}$ Laplace eqn. $u_{rr}+\dfrac{1}{r}u_r +\dfrac{1}{r^2}u_{\theta\theta}=0\tag{9}$ ### Example :film_frames: https://reurl.cc/kdWd3n 14:09 $\left\{\begin{array}{l}u_{rr}+\dfrac{1}{r}u_r +\dfrac{1}{r^2}u_{\theta\theta}=0,\qquad (0\leq r<p);\\u(p,\theta)=f(\theta),\text{ where}\\f(\theta) \text{ is periodic with period }2\pi.\end{array}\right.\tag{10}$ #### Solution 1. Let $u(r,\theta)=R(r)\Theta(\theta)$ The PDE becomes $R''\Theta+\dfrac{1}{r}R'\Theta+\dfrac{1}{r^2}R\Theta''=0$ $\implies \dfrac{r^2R''+rR'}{R}=\dfrac{-\Theta''}{\Theta}\equiv\lambda$ 2. Solve the ODE of $\Theta$: $$\Theta''+\lambda\Theta=0\tag{11}$$ $\because$ $f(\theta)$ is periodic with period $2\pi$, $\therefore$ $\Theta(\theta)$ is also periodic. | situation | form of solution | | --------------------- | ------------------------------------------------------------ | | $\lambda=-\alpha^2<0$ | $\Theta(\theta)=c_1e^{\alpha\theta}+c_2e^{-\alpha\theta}$ is ==never periodic==. | | $\lambda=0$ | $\Theta(\theta)=c_1+c_2\theta$ is ==periodic only if $c_2=0$==. | | $\lambda=\alpha^2>0$ | $\Theta(\theta)=c_1\cos(\alpha\theta)+c_2\sin(\alpha\theta)$ is ==periodic only if $\alpha$ is an integer==. [Desmos simulation](https://www.desmos.com/calculator/lfstqcmw2v).| Therefore, | index $n$ | eigenvalue of <br>Eqn. (11) | eigenfunction of <br>Eqn. (11) | | -------------- | --------------- | ---------------------------------------------------------- | | $n=0$ | $\lambda_0=0$ | $\Theta_0(\theta)=1$ | | $n=1,2,\ldots$ | $\lambda_n=n^2$ | $\Theta_n(\theta)=A_n\cos(n\theta)+B_n\sin(n\theta)$ | 3. Solve the ODE of $R$: :film_frames: https://reurl.cc/kdWd3n 28:50 - For $\lambda_0=0$, then the ODE of $R$ is $$r^2R_0''+rR_0'=0.\tag{12}$$ > This is a **Cauchy–Euler diff. eqn.**. > :film_frames: https://reurl.cc/kdWd3n 29:41 > ![](https://i.imgur.com/OPQQOYi.png) > Let $r=e^t,\ t=\ln r$ ... > $m(m-1)+m=0\implies m=0,0$ > $R_0(t)=a_0e^{0t}+b_0te^{0t}$ > $R_0(r)=a_0+b_0\ln r$ $\because$ $u$ is cont. at $r=0,\quad$ $\therefore\,b_0=0$ and $R_0(r)=a_0$ Thus, a sol. is $\boxed{u_0(r,\theta)=R_0(t)\Theta_0(\theta)\equiv a_0/2}$. - :film_frames: https://reurl.cc/V6oXDn 00:00 For $\lambda_n>0\ (n=1,2,\ldots)$, then the ODE of $R$ is $$r^2R_n''+rR_n'-n^2R_n=0.\tag{13}$$ > **Cauchy–Euler diff. eqn.** > Let $r=e^t,\ t=\ln r$ ... > $m(m-1)+m-n^2=0\implies m=\pm n$ > $R_n(t)=a_{n}e^{nt}+b_ne^{-nt}$ > $R_n(r)=a_nr^n+b_nr^{-n}$ $\because$ $u$ is cont. at $r=0,\quad$ $\therefore\, b_n=0$ and $R_n(r)=a_nr^n$ for $n=1,2,\ldots$ Thus, a sol. is $\boxed{u_n(r,\theta)=R_n(r)\Theta_n(\theta)=a_nr^n[A_n\cos(n\theta)+B_n\sin(n\theta)]}.$ The gen. sol. is $$\boxed{u(r,\theta)=a_0+\sum^\infty_{n=1}r^n[C_{1n}\cos(n\theta)+C_{2n}\sin(n\theta)]}.$$ 4. Apply B.C. - $\displaystyle u(p,\theta)=f(\theta)=\dfrac{1}{2}a_0+\sum^\infty_{n=1}p^n[C_{1n}\cos(n\theta)+C_{2n}\sin(n\theta)]$ - $\displaystyle \boxed{a_0=\frac{1}{\pi}\int^\pi_{-\pi} f(\theta)\ \text{d}\theta},$ - $\displaystyle \boxed{C_{1n}=\frac{1}{p^n\pi}\int^\pi_{-\pi} f(\theta)\cos (n\theta)\ \text{d}\theta},\quad n=1,2,3\ldots,$ - $\displaystyle \boxed{C_{2n}=\frac{1}{p^n\pi}\int^\pi_{-\pi} f(\theta)\sin (n\theta)\ \text{d}\theta},\quad n=1,2,3\ldots.$ $\blacksquare$ --- ## Non-homog. S-L BVP :film_frames: https://reurl.cc/V6oXDn 11:12 :film_frames: https://reurl.cc/V6oXDn 13:02 > **S-L BVP** > $\dfrac{\text{d}}{\text{d}x}\left[p(x)\dfrac{\text{d}y}{\text{d}x}\right]- q(x)y+\lambda r(x)y=0;$ > $\alpha_1y(a)+\alpha_2y'(a)=0,\quad\beta_1y(b)+\beta_2 y'(b)=0.$ ### Example :film_frames: https://reurl.cc/V6oXDn 15:16 Consider $$\left\{\begin{array}{l}-(py')'+qy=\mu ry+f; \\\alpha_1y(0)+\alpha_2y'(0)=0,\quad\beta_1y(1)+\beta_2 y'(1)=0,\end{array}\right.\tag{14}$$ where $y,p,q,r,\mu,f$ are all defined on $x\in(0,1)$. Other conditions satisfy those in homog. S-L problem. #### Solution (proposed) Let $L[y]\equiv -(py')'+qy$ First, suppose the solutions of ***homog.*** S-L B.V.P. associated with Eqn. (14) are - e-val. $\lambda_n,\quad n=1,2,3,\ldots,$ and - (normalized) e-func. $\phi_n,\quad n=1,2,3,\ldots.$ Let $\phi$ be any solution of Eqn. (14); i.e. $L[\phi]=\mu r\phi+f$. Then, it appears that $\phi$ can be expanded with $\{\phi_n\}$: $$\phi(x)=\sum^\infty_{n=1}c_n\phi(x),$$ where $$c_n=\int^1_0\phi(x)\phi_n(x)r(x)\text{d}x.$$ However, there is a problem -- since $\phi$ is unknown, we are not able to evaluate $c_n$...