# Final Exam ###### tags: `統計學` ## Question 1 ![](https://i.imgur.com/pQraGI3.jpg) ### (a) Let Event $\text{A}$ be the event that a sample point is left-handed and Event $\text{B}$ be the event that a sample point is color blind $P(\text{A}\cap\text{B})=P(\text{A}\cup\text{B})-\left[P(\text{A})+P(\text{B})\right]=0.6+0.7-0.8=0.5.$ $\blacksquare$ ### (b) $P(\text{A}|\text{B})=\dfrac{P(\text{A}\cap\text{B})}{P(\text{B})}=\dfrac{0.5}{0.7}=0.71.$ $\blacksquare$ ### (c\) $\because P(\text{A}\cap\text{B})=0.5\neq P(\text{A})P(\text{B})=0.6\times0.7=0.42$ $\therefore$ Events $\text{A}$ and $\text{B}$ are NOT independent events. $\blacksquare$ ### (d) $\because P(\text{A}\cap\text{B})=0.5\neq0\quad\therefore$ Events $\text{A}$ and $\text{B}$ are NOT disjoint events. $\blacksquare$ ## Question 2 ## Question 3 ![](https://i.imgur.com/QNXo3I5.jpg) $X=$ prothrombin time population standard deviation $\sigma = 15$ population mean $\mu = 15$ sample size $n=64$ significance level $\alpha=0.05$ ### a) statistical power $1-\beta$ is between $0.85$ or $0.9$ ![](https://upload.wikimedia.org/wikipedia/commons/1/10/Sample_Sizes_Effect_on_Power.png) ### b) ### c\) Yes, because the calcuations in a) and b) is unber the basis of symmetric sample distribution. ## Question 4 ![](https://i.imgur.com/vRltrnx.jpg) sample size $n=300$, sample size of female $n_\text{F}=200$, sample size of male $n_\text{M}=100$ | Genger | Books | Wine | Sport | | ------- | --- | --- | --- | | Female (1) | 150 | 20 | 30 | | Male (2) | 60 | 20 | 20 | Interest: whether males and females make the same choice or not ### Part (a) * null hypothesis: * alternative hypothesis: ### Part (b) ### Part (c\) ### Part (d) ### Part (e) ## Question 5 ![](https://i.imgur.com/RQFa8jT.jpg) whether 2 samples are from same population? ### Part (a) Define subscript 1 for "chemical", 2 for "control" - sample statistics * $n_1=5$, $n_2=4$ * $\overline{X}_1=2100$, $\overline{X}_2=3850$ * $s_1=710.6$, $s_2=888.8$ - establishing hypothesis: - null hypothesis: $\mu_1=\mu_2$ - alternative hypothesis: $\mu_1\neq\mu_2$ - $t$-test statistics: $t_\text{obs} = -2.89$ ![](https://i.imgur.com/6umdcmZ.png =400x) ### Part (b) $\sigma$ unknown, use $t$-distribution total degree of freedom $\text{df}=4+3-2=5$ $t_\text{obs} = -2.89$ corresponds to a tail probability of $p=1-0.9829=0.0171$ ![](https://i.imgur.com/fFMZiNf.png =300x) ### Part (c\) significance level $\alpha = .05$, critical value $t_\text{cv}=2.571$ $\because |t_\text{obs}| = 2.89 > |t_\text{cv}|=2.571$ or $\because p=0.0171<\alpha=0.05\quad\therefore$ **null hypothesis rejected**, i.e. there is **significant** difference between the two samples Conclusion: The two random samples are **NOT** samples from the same population distribution ### Part (d)