# 埃爾米特多項式與量子諧振子 ###### tags: `應用數學三` 教學影片(@NTU COOL):[Chapter 3-9](https://cool.ntu.edu.tw/courses/1649/modules/items/79879) \ 一維量子諧振子的薛丁格方程式為 $$\hat{H}|\psi\rangle=\underbrace{\left(-\dfrac{\hbar^2}{2m}\dfrac{\text{d}^2}{\text{d}x^2}+\dfrac{1}{2}m\omega^2\hat{x}^2\right)}_{\equiv\ \hat{H}}|\psi\rangle=E|\psi\rangle\tag{1}$$ 其中 $\hat{H}$ 是哈密頓算子,它(投影在位置空間中)的固有函數 $\psi_n(x)$ 與固有值 $E_n$ 滿足 $$\hat{H}\psi_n(x)=-\dfrac{\hbar^2}{2m}\dfrac{\text{d}^2\psi_n(x)}{\text{d}x^2}+\dfrac{1}{2}m\omega^2x^2\psi_n=E_n\psi_n(x)\tag{2}$$ ## 1. 基態波函數 若用約化位置坐標 $$\rho=\sqrt{\dfrac{m\omega}{\hbar}}x\tag{3}$$ 取代一般位置坐標 $x$,則 $$\hat{H}=\dfrac{\hbar\omega}{2}\left(-\dfrac{\hbar}{m\omega}\dfrac{\text{d}^2}{\text{d}x^2}+\dfrac{m\omega}{\hbar}\hat{x}^2\right)=\dfrac{\hbar\omega}{2}\left(-\dfrac{\text{d}^2}{\text{d}\rho^2}+\rho^2\right)。\tag{4}$$ ### 定義1:創生與消滅算符 ***消滅算符(annihilation operator)*** $\hat{a}$ $$\boxed{\hat{a}\equiv\dfrac{1}{\sqrt{2}}\left(\dfrac{\text{d}}{\text{d}\rho}+\rho\right)}\tag{5}$$ ***創生算符(creation operator)*** $\hat{a}^\dagger$ $$\boxed{\hat{a}^\dagger\equiv\dfrac{1}{\sqrt{2}}\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)}\tag{6}$$ (我們之後就會知道它們為什麼被命名成這樣了。) ### 性質1:創生與消滅算符的伴隨關係 $\hat{a}^\dagger$ 右上角的 $\dagger$(匕首,dagger)指出它是 $\hat{a}$ 的[埃爾米特伴隨](https://reurl.cc/kdQEXn)(Hermitian adjoint),但前提如下:給定任兩個平方可積函數 $f$、$g$,把它們的內積定義成 $$\langle g|f\rangle\equiv\int^\infty_{-\infty}g^*(\rho)f(\rho)\,\text{d}x=\sqrt{\dfrac{\hbar}{m\omega}}\int^\infty_{-\infty}g^*(\rho)f(\rho)\,\text{d}\rho,\tag{7}$$ 如此一來我們可以驗證 $\hat{a}^\dagger$ 的確是$\hat{a}$ 的埃爾米特伴隨:$$\begin{align}\langle g|\hat{a}|f\rangle&=\int^\infty_{-\infty}g^*(\rho)\dfrac{1}{\sqrt{2}}\left(\dfrac{\text{d}}{\text{d}\rho}+\rho\right)f(\rho)\,\text{d}x\\&=\int^\infty_{-\infty}\left[\dfrac{1}{\sqrt{2}}\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)g(\rho)\right]^*f(\rho)\,\text{d}x=\langle \hat{a}^\dagger g|f\rangle\end{align}$$(關於 $\text{d}/\text{d}x$ 的埃爾米特伴隨是 $-\text{d}/\text{d}x$,可參考[這份文件](https://reurl.cc/0oyXGl)的 (5) 式)。 ### 性質2:創生與消滅算符的交換子 把 $\hat{a}$ 和 $\hat{a}^\dagger$ 的交換子 $\left[\hat{a},\hat{a}^\dagger\right]$ 對任意一個可微函數 $f(\rho)$ 作用,我們得到 $$\require{cancel}\begin{align}\left[\hat{a},\hat{a}^\dagger\right]\,f(\rho)&=\hat{a}\hat{a}^\dagger f(\rho)-\hat{a}^\dagger\hat{a} f(\rho)\\&=\dfrac{1}{2}\left(\small\dfrac{\text{d}}{\text{d}\rho}+\rho\right)\left[-f'(\rho)+\rho f(\rho)\right]-\dfrac{1}{2}\left(\small-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)\left[f'(\rho)+\rho f(\rho)\right]\\ &=\dfrac{1}{2}\left[-\bcancel{f''(\rho)}-\cancel{\rho f'(\rho)}+f(\rho)+\cancel{\rho f'(\rho)}+\bcancel{\rho^2f(\rho)}\right]\\ &\quad-\dfrac{1}{2}\left[-\bcancel{f''(\rho)}+\cancel{\rho f'(\rho)}-f(\rho)-\cancel{\rho f'(\rho)}+\bcancel{\rho^2f(\rho)}\right]\\&=f(\rho),\tag{8}\end{align}$$ 或者我們也可以用一般的算符 $\hat{A}$、$\hat{B}$,觀察到 $$\begin{align}&\quad\left[\hat{A}+\hat{B},-\hat{A}+\hat{B}\right]\\&=\left(\hat{A}+\hat{B}\right)\left(-\hat{A}+\hat{B}\right)-\left(-\hat{A}+\hat{B}\right)\left(\hat{A}+\hat{B}\right)\\&=\left(-\cancel{\hat{A}^2}-\hat{B}\hat{A}+\hat{A}\hat{B}+\cancel{\hat{B}^2}\right)-\left(-\cancel{\hat{A}^2}+\hat{B}\hat{A}-\hat{A}\hat{B}+\cancel{\hat{B}^2}\right)\\&=2\left(\hat{A}\hat{B}-\hat{B}\hat{A}\right)=2\left[\hat{A},\hat{B}\right],\end{align}$$ 並將此用於計算 $$\begin{align}\left[\hat{a},\hat{a}^\dagger\right]\,f(\rho)&=\left[\dfrac{1}{\sqrt{2}}\left(\dfrac{\text{d}}{\text{d}\rho}+\rho\right),\dfrac{1}{\sqrt{2}}\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)\right]f(\rho)\\&=2\left[\dfrac{1}{\sqrt{2}}\dfrac{\text{d}}{\text{d}\rho},\dfrac{1}{\sqrt{2}}\rho\right]f(\rho)=\left[\dfrac{\text{d}}{\text{d}\rho},\rho\right]f(\rho)\\&=\dfrac{\text{d}[\rho f(\rho)]}{\text{d}\rho}-\rho\dfrac{\text{d} f(\rho)}{\text{d}\rho}=f(\rho)+\cancel{\rho\dfrac{\text{d} f(\rho)}{\text{d}\rho}}-\cancel{\rho\dfrac{\text{d} f(\rho)}{\text{d}\rho}}\\&=f(\rho)。\tag{9}\end{align}$$ 因此,(8)、(9)式都證明以下關係: $$\boxed{\left[\hat{a},\hat{a}^\dagger\right]=\hat{1}}\tag{10}$$ ### 定義2:粒子數算符 我們可證明$$\boxed{\hat{H}=\hbar\omega\left(\hat{a}^\dagger\hat{a}+\dfrac{1}{2}\right)},\tag{11}$$ 其方法是對創生及消滅算符做如下運算 $$\begin{align}\hat{a}^\dagger\hat{a}&=\dfrac{1}{2}\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)\left(\dfrac{\text{d}}{\text{d}\rho}+\rho\right)\\&=\dfrac{1}{2}\left(-\dfrac{\text{d}^2}{\text{d}\rho^2}+\rho^2\right)-\dfrac{1}{2}\left[\dfrac{\text{d}}{\text{d}\rho},\rho\right]\\&=\dfrac{\hat{H}}{\hbar\omega}-\dfrac{1}{2},\tag{12}\end{align}$$ 其中我們使用了 (4) 式以得到 $\frac{1}{2}(-\text{d}^2/\text{d}\rho^2+\rho^2)=\hat{H}/\hbar\omega$,又利用 (9) 式推導過程而得到 $[\text{d}/\text{d}\rho,\rho]=\hat{1}$。 ***粒子數算符*** 或***佔有數算符(occupation number operator)*** 定義為 $$\boxed{\hat{N}=\hat{a}^\dagger\hat{a}}\tag{13}$$ (我們之後就會看出為什麼如此命名),則 (11) 式也可以寫成 $$\boxed{\hat{H}=\hbar\omega\left(\hat{N}+\dfrac{1}{2}\right)}\tag{14}$$ ### 定義3:基態 由 $$\int^\infty_{-\infty}\psi^*(\rho)\,\hat{a}^\dagger\hat{a} \psi(\rho)\, \text{d}x=\int^\infty_{-\infty}\left[\hat{a}\psi(\rho)\right]^* \left[\hat{a}\psi(\rho)\right] \text{d}x$$ 或者由更簡潔的 $$\langle \psi|\hat{a}^\dagger\hat{a}|\psi\rangle=\langle \hat{a}\psi|\hat{a}\psi\rangle=\|\hat{a}\psi\|^2\tag{15}$$ 都可看出 (14)、(15) 式都是 $$\hat{a}\psi(\rho)=\dfrac{1}{\sqrt{2}}\left(\dfrac{\text{d}}{\text{d}\rho}+\rho\right)\psi(\rho)\tag{16}$$ 的範數(norm)。 若有一狀態 $\psi_0(\rho)$ 的範數為零,亦即 $\psi_0(\rho)$ 滿足 $$\boxed{\hat{a}\psi_0(\rho)=\dfrac{1}{\sqrt{2}}\left(\dfrac{\text{d}}{\text{d}\rho}+\rho\right)\psi_0(\rho)=0},\tag{17}$$ 則 $\psi_0(\rho)$ 也會滿足 $$\begin{align}\hat{H}\psi_0(\rho)&=\hbar\omega\left(\hat{a}^\dagger\hat{a}+\dfrac{1}{2}\right)\psi_0(\rho)\\&=\hbar\omega\hat{a}^\dagger\cancelto{0}{\left(\hat{a}\psi_0(\rho)\right)}+\dfrac{1}{2}\hbar\omega\psi_0(\rho)\\&=\dfrac{1}{2}\hbar\omega\psi_0(\rho)。\end{align}$$ 我們陳述(而不證明) $E_0\equiv \frac{1}{2}\hbar\omega$ 是 $\hat{H}$ 所有固有值中最小的一個,代表最低能量;此時的狀態 $\psi_0$ 稱為**基態**(ground state),下標記為 $0$ 的原因在此。 ### 解出基態波函數 ::: spoiler <font size=2>一階線性微分方程式</font> $$y'(x)+P(x)y(x)=Q(x)$$ <font size=2>的解析解為</font> $$y(x)=\dfrac{1}{u(x)}\int Q(x)u(x)\,\text{d}x,$$ <font size=2>其中</font> $u(x)=e^{\int P(x)\,\text{d}x}$ <font size=2>為積分因子。</font> ::: 我們可解 (17) 式(一階線性微分方程式),得到基態波函數 $$\psi_0(\rho)=\dfrac{1}{e^{\rho^2/2}}\underbrace{\int_0^{\rho}\left[0\cdot e^{\rho'^2/2}\right]\text{d}\rho'}_{\equiv\ A}=Ae^{-\rho^2/2},$$ 或換回一般位置坐標 $x$,就是 $$\psi_0(x)=Ae^{-\frac{m\omega}{2\hbar}x^2},$$其中常數 $A$ 要由歸一化條件決定:$$\begin{align}1&=\int^\infty_{-\infty}\left[\psi_0(x)\right]^2\text{d}x=|A|^2\int^\infty_{-\infty}e^{-\frac{m\omega}{\hbar}x^2}\text{d}x=|A|^2\sqrt{\dfrac{\pi\hbar}{m\omega}}\\\implies A&=\left(\dfrac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}\tag{18}\end{align}$$ 於是,量子諧振子(歸一化後)的基態波函數為$$\boxed{\psi_0(x)=\left(\dfrac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}e^{-\frac{m\omega}{2\hbar}x^2}}。\tag{19}$$ ## 2. 一般狀態波函數 對於一般狀態的波函數 $\psi_n(x)$,我們可以用 (15) 式把 (2) 式改寫成 $$\hat{H}\psi_n(x)=\hbar\omega\left(\hat{N}+\dfrac{1}{2}\right)\psi_n(x)=E_n\psi_n(x),$$ 更可以改寫成 $$\boxed{\hat{N}\psi_n(x)=\lambda_n\psi_n(x)},\tag{20}$$ 其中$\hat{N}$ 的固有值是 $$\boxed{\lambda_n=\dfrac{E_n}{\hbar\omega}-\dfrac{1}{2}},\tag{21}$$伴隨的固有函數仍是 $\psi_n(x)$。 為了解出 $\psi_n(x)$,我們不妨使用擬設(ansatz)$$\psi(x)=y(x)\psi_0(x),$$ 把 $\psi_n(x)$ 假定為基態波函數((19)式)與某函數 $y(x)$ 的積(我們將會證明 $y(x)$ 其實是個多項式)。則可藉由 $\hat{N}=\hat{a}^\dagger\hat{a}$ 的關係((13)式)將 (20) 式寫成 $$\begin{align}\lambda_n y\psi_0&=\hat{a}^\dagger\hat{a}(y\psi_0)=\dfrac{1}{2}\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)\left(\dfrac{\text{d}}{\text{d}\rho}+\rho\right)(y\psi_0)\\&=\dfrac{1}{2}\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)\bigg(\psi_0\dfrac{\text{d}y}{\text{d}\rho}+\cancelto{0}{y\dfrac{\text{d}\psi_0}{\text{d}\rho}+y\rho\psi_0}\bigg)\\&=\dfrac{1}{2}\left(-\dfrac{\text{d}\psi_0}{\text{d}\rho}\dfrac{\text{d}y}{\text{d}\rho}-\psi_0\dfrac{\text{d}^2y}{\text{d}\rho^2}+\rho\psi_0\dfrac{\text{d}y}{\text{d}\rho}\right)\\&=\dfrac{1}{2}\left[-\dfrac{\text{d}y}{\text{d}\rho}\cancelto{0}{\left(\dfrac{\text{d}\psi_0}{\text{d}\rho}+\rho\psi_0\right)}-\psi_0\dfrac{\text{d}^2y}{\text{d}\rho^2}+2\rho\psi_0\dfrac{\text{d}y}{\text{d}\rho}\right]\\&=\left(\rho\dfrac{\text{d}y}{\text{d}\rho}-\dfrac{1}{2}\dfrac{\text{d}^2y}{\text{d}\rho^2}\right)\psi_0,\end{align}$$ 其中我們使用 $\frac{\text{d}\psi_0}{\text{d}\rho}+\rho\psi_0=0$((17) 式)兩次。由此推得 $$\boxed{\dfrac{\text{d}^2y}{\text{d}\rho^2}-2\rho\dfrac{\text{d}y}{\text{d}\rho}+2\lambda_ny=0}。\tag{22}$$ (22) 式是二階線性微分方程式,叫做***埃爾米特方程式(Hermite equation)***。 ### 定義1:階梯算符 利用 (10) 式的關係和 (13) 式的定義,我們能計算創生算符 $\hat{a}^\dagger$ 和 粒子數算符 $\hat{N}$ 的交換子,$$\boxed{\left[\hat{N},\hat{a}^\dagger\right]=\left[\hat{a}^\dagger\hat{a},\hat{a}^\dagger\right]=\hat{a}^\dagger}\tag{23}$$ 這是因為由[交換子的運算規則](https://reurl.cc/L3Z6ax) ,對任意三算符 $A$、$B$、$C$,我們有$$\left[\hat{A}\hat{B},\hat{C}\right]=\left[\hat{A},\hat{C}\right]\hat{B}+\hat{A}\left[\hat{B},\hat{C}\right]$$ 和 $$\left[\hat{A},\hat{A}\right]=0,$$ 所以 $\left[\hat{a}^\dagger\hat{a},\hat{a}^\dagger\right]=\cancelto{0}{\left[\hat{a}^\dagger,\hat{a}^\dagger\right]}\hat{a}+\hat{a}^\dagger\cancelto{1}{\left[\hat{a},\hat{a}^\dagger\right]}$,於是就得到 (23) 式。 對於滿足 (23) 式這種對易關係的算符 $\hat{a}^\dagger$,我們稱之為***階梯算符(ladder operator)***,其一般定義如下: [階梯算符](https://reurl.cc/0oyl0A)(ladder operator) : 算符 $\hat{X}$ 是階梯算符,若且唯若: 1. $\hat{X}$ 與一任意算符 $\hat{N}$ 有對易關係如下:$$\left[\hat{N},\hat{X}\right]=c\hat{X},$$ 其中 $c$ 為純量;而且 2. 如果 $|n\rangle$ 是上述算符 $\hat{N}$ 的固有態,對應到固有值 $n$, 即$\hat{N}|n\rangle=n|n\rangle$,則算符 $\hat{X}$ 作用在 $|n\rangle$ 後,對應到 $\hat{N}$ 的固有值 $n$ 移動了 $c$,也就是 $$\begin{align}\hat{N}\hat{X}|n\rangle&=\left(\hat{X}\hat{N}+\left[\hat{N},\hat{X}\right]\right)|n\rangle\\&=\left(\hat{X}\hat{N}+c\hat{X}\right)|n\rangle\\&=\hat{X}\hat{N}|n\rangle+c\hat{X}|n\rangle\\&=(n+c)\hat{X}|n\rangle\end{align}$$ 當 $c>0$ 時,稱為***升算符(raising operator)***;當 $c<0$ 時,稱為***降算符(lowering operator)***。 按照以上定義, - 消滅算符 $\hat{a}$ 是一種降算符,且 $c=-1$ - 創生算符 $\hat{a}^\dagger$ 是一種升算符,且 $c=1$。 ### 解出一般狀態波函數 用 (23) 式,計算作用一次 $\hat{a}^\dagger$ 時得到$$\begin{align}\hat{N}\hat{a}^\dagger\psi_n&=\hat{a}^\dagger\hat{N}|\psi_n\rangle-\left[\hat{N},\hat{a}^\dagger\right]|\psi_n\rangle=\hat{a}^\dagger\left(\hat{N}+\hat{1}\right)|\psi_n\rangle\\&=(\lambda_n+1)\hat{a}^\dagger|\psi_n\rangle,\end{align}$$ 作用兩次 $\hat{a}^\dagger$ 時,會是$$\begin{align}\hat{N}\left(\hat{a}^\dagger\right)^2|\psi_n\rangle&=\hat{N}\hat{a}^\dagger\left(\hat{a}^\dagger|\psi_n\rangle\right)=\hat{a}^\dagger\left(\hat{N}+\hat{1}\right)\left(\hat{a}^\dagger|\psi_n\rangle\right)\\ &=\hat{a}^\dagger\left(\hat{N}\hat{a}^\dagger|\psi_n\rangle+\hat{a}^\dagger|\psi_n\rangle\right)=\hat{a}^\dagger\left[(\lambda_n+1)\hat{a}^\dagger|\psi_n\rangle+\hat{a}^\dagger|\psi_n\rangle\right]\\ &=(\lambda_n+2)\left(\hat{a}^\dagger\right)^2|\psi_n\rangle,\end{align}$$ 如此重複下去,可歸納出,作用 $k$ 次 $\hat{a}^\dagger$ 時,會是 $$\hat{N}\left(\hat{a}^\dagger\right)^k|\psi_n\rangle=(\lambda_n+k)\left(\hat{a}^\dagger\right)^k|\psi_n\rangle,\tag{24}$$ 這就驗證了階梯算符的意義——使固有值移動。對 (24) 式而言,比較特別的是 $$\hat{N}\left(\hat{a}^\dagger\right)^n|\psi_0\rangle=(\lambda_0+n)\left(\hat{a}^\dagger\right)^n|\psi_0\rangle=n\left(\hat{a}^\dagger\right)^n|\psi_0\rangle,\tag{25}$$ (由 (21) 式和 $E_0=\frac{1}{2}\hbar\omega$ 可知 $\lambda_0=0$)。但把 (25) 式與 $\hat{N}|\psi_n\rangle=\lambda_n|\psi_n\rangle$((20) 式)比較,我們發現 $$\lambda_n=n,\tag{26}$$ 或者用 (21) 式解出能量固有值 $$\boxed{E_n=\hbar\omega\left(n+\dfrac{1}{2}\right)};\tag{27}$$ 我們又發現$$|\psi_n\rangle=\left(\hat{a}^\dagger\right)^n|\psi_0\rangle。\tag{28}$$ 換句話說,==對 $|\psi_0\rangle$ 作用 $n$ 次 $\hat{a}^\dagger$ 就可以得到 $|\psi_n\rangle$==。但我們希望 $|\psi_n\rangle=\left|\left(\hat{a}^\dagger\right)^n\psi_0\right>$ 歸一化,所以我們計算$$\require{color}\begin{align}\langle\psi_n|\psi_n\rangle&=\left<\left(\hat{a}^\dagger\right)^{\color{darkcyan}n}\psi_0\middle|\left(\hat{a}^\dagger\right)^{\color{darkcyan}n}\psi_0\right> \\&=\left<\psi_0\middle|\hat{a}^{\color{darkcyan}n}\left(\hat{a}^\dagger\right)^{\color{darkcyan}n}\middle|\psi_0\right>\\ &=\left<\psi_0\middle|\hat{a}^{\color{darkcyan}n-1}\left.\color{blue}\left(\hat{a}\hat{a}^\dagger\right)\right.\left(\hat{a}^\dagger\right)^{\color{darkcyan}n-1}\middle|\psi_0\right>\\ &=\left<\psi_0\middle|\hat{a}^{\color{darkcyan}n-1}\left.\color{blue}\left(\hat{N}+\left[\hat{a},\hat{a}^\dagger\right]\right)\right.\left(\hat{a}^\dagger\right)^{\color{darkcyan}n-1}\middle|\psi_0\right>\\ &=\left<\psi_0\middle|\hat{a}^{\color{darkcyan}n-1}\left.\color{blue}\left(\hat{N}+\hat{1}\right)\right.\left(\hat{a}^\dagger\right)^{\color{darkcyan}n-1}\middle|\psi_0\right>\\ &=\Big\langle\psi_0\hat{a}^{\color{darkcyan}n-1}\bigg|\left[\left.\color{blue}\hat{N}\right.\left(\hat{a}^\dagger\right)^{\color{darkcyan}n-1}|\psi_0\rangle+\left.\color{blue}\hat{1}\right.\left(\hat{a}^\dagger\right)^{\color{darkcyan}n-1}|\psi_0\rangle\right]\\ &=\Big\langle\psi_0\hat{a}^{\color{darkcyan}n-1}\bigg|\left[\left.\color{blue}(n-1)\right.\left(\hat{a}^\dagger\right)^{\color{darkcyan}n-1}|\psi_0\rangle+\left.\color{blue}1\right.\left(\hat{a}^\dagger\right)^{\color{darkcyan}n-1}|\psi_0\rangle\right]\\ &=\left<\psi_0\hat{a}^{\color{darkcyan}n-1}\middle|\left.\color{blue}n\right.\left(\hat{a}^\dagger\right)^{\color{darkcyan}n-1}\psi_0\right>=\left.\color{blue}n\right.\left<\psi_0\middle|\hat{a}^{\color{darkcyan}n-1}\left(\hat{a}^\dagger\right)^{\color{darkcyan}n-1}\middle|\psi_0\right>\\ &=\left.\color{blue}n(n-1)\right.\left<\psi_0\middle|\hat{a}^{\color{darkcyan}n-2}\left(\hat{a}^\dagger\right)^{\color{darkcyan}n-2}\middle|\psi_0\right>=\cdots\\ &=\left.\color{blue}n!\right.\left<\psi_0\middle|\hat{a}^{\color{darkcyan}0}\left(\hat{a}^\dagger\right)^{\color{darkcyan}0}\middle|\psi_0\right>=\left.\color{blue}n!\right.\left<\psi_0\middle|\psi_0\right>=\left.\color{blue}n!\right.。\end{align}$$ 所以如果把 $|\psi_n\rangle$ 除以它的範數 $\sqrt{n!}$ 等於是為 $|\psi_n\rangle$ 做歸一化,於是,量子諧振子(歸一化後)的固有態波函數為 $$\boxed{\psi_n(x)=\dfrac{1}{\sqrt{n!}}\left(\hat{a}^\dagger\right)^n\psi_0(x)}。\tag{29}$$ ### 定義2:埃爾米特多項式 (29) 式還留有 $n$ 個算符 $\hat{a}^\dagger$,我們讓它對 $\psi_0(x)$ ((19)式)作用,得到 $$\begin{align}\psi_n(x)&=\dfrac{1}{\sqrt{n!}}\left(\hat{a}^\dagger\right)^n\psi_0(x)=\dfrac{1}{\sqrt{n!}}\left[\dfrac{1}{\sqrt{2}}\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)\right]^n\left[\left(\dfrac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}e^{-\frac{m\omega}{2\hbar}x^2}\right]\\ &=\dfrac{1}{\sqrt{2^nn!}}\left(\dfrac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)^ne^{-\frac{\rho^2}{2}}。\tag{30}\end{align}$$ 這裡出現了 $\left(-\tfrac{\text{d}}{\text{d}\rho}+\rho\right)^ne^{-\frac{\rho^2}{2}}$,我們注意到 $$\begin{align}e^{-\frac{\rho^2}{2}}&=\left.\color{darkgreen}1\right.e^{-\frac{\rho^2}{2}}\\\left(-\tfrac{\text{d}}{\text{d}\rho}+\rho\right)e^{-\frac{\rho^2}{2}}&=\left.\color{darkgreen}2\rho\right.e^{-\frac{\rho^2}{2}}\\\left(-\tfrac{\text{d}}{\text{d}\rho}+\rho\right)^2e^{-\frac{\rho^2}{2}}=\left(-\tfrac{\text{d}}{\text{d}\rho}+\rho\right)\left[(2\rho)e^{-\frac{\rho^2}{2}}\right]&=\left.\color{darkgreen}(4\rho^2-2)\right.e^{-\frac{\rho^2}{2}}\\\left(-\tfrac{\text{d}}{\text{d}\rho}+\rho\right)^3e^{-\frac{\rho^2}{2}}=\left(-\tfrac{\text{d}}{\text{d}\rho}+\rho\right)\left[(4\rho^2-2)e^{-\frac{\rho^2}{2}}\right]&=\left.\color{darkgreen}(8\rho^3-12\rho)\right.e^{-\frac{\rho^2}{2}}\\&\ \ \vdots\\\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)^ne^{-\frac{\rho^2}{2}}&=\left.\color{darkgreen}(n~次多項式)\right.e^{-\frac{\rho^2}{2}}\end{align}$$ 一直都是某個多項式乘上 $e^{-\frac{\rho^2}{2}}$,我們把它命名為***埃爾米特多項式(Hermite polynomial)***,記作 $H_n(\rho)$,它滿足 $$\boxed{H_n(\rho)=e^{\frac{\rho^2}{2}}\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)^ne^{-\frac{\rho^2}{2}}},\quad n=0,1,2,\ldots,\tag{31}$$ 其中前四個埃爾米特多項式是 $$H_0(\rho)=1,\quad H_1(\rho)=2\rho,\quad H_2(\rho)=4\rho^2-2,\quad H_3(\rho)=8\rho^3-12\rho。$$ 使用 (31) 式,可以把 (30) 式寫成 $$\psi_n(\rho)=\dfrac{1}{\sqrt{2^nn!}}\left(\dfrac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}H_n\left(\rho\right)e^{-\frac{\rho^2}{2}}$$ 或 $$\boxed{\psi_n(x)=\dfrac{1}{\sqrt{2^nn!}}\left(\dfrac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}H_n\left(\sqrt{\dfrac{m\omega}{\pi\hbar}}x\right)e^{-\frac{m\omega}{2\hbar}x^2}}\tag{32}$$ [![](https://i.imgur.com/HezFeGk.png)](https://www.desmos.com/calculator/y5faaiesio) ### 定義3:羅德里格公式 埃爾米特多項式的羅德里格公式(Rodrigues' formular)為$$\boxed{H_n(\rho)=e^{\rho^2}\left(-\frac{\text{d}}{\text{d}\rho}\right)^ne^{-\rho^2}},\quad n=0,1,2,\ldots。\tag{31}$$ (30) 式的定義和 (31) 式是等價的,證明如下:$$\begin{align}H_n(\rho)&=\left.\color{darkgoldenrod}e^{\frac{\rho^2}{2}}\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)^ne^{-\frac{\rho^2}{2}}\right.=e^{\frac{\rho^2}{2}}\overbrace{\left(-\tfrac{\text{d}}{\text{d}\rho}+\rho\right)\cdots\left(-\tfrac{\text{d}}{\text{d}\rho}+\rho\right)}^{n~個}e^{-\frac{\rho^2}{2}}\\ &=\overbrace{\Big[e^{\frac{\rho^2}{2}}\left(-\tfrac{\text{d}}{\text{d}\rho}+\rho\right)\underbrace{\color{red}e^{-\frac{\rho^2}{2}}\Big]\Big[e^{\frac{\rho^2}{2}}}_{=\ 1}\cdots\underbrace{\color{red}e^{-\frac{\rho^2}{2}}\Big]\Big[e^{\frac{\rho^2}{2}}}_{=\ 1}\left(-\tfrac{\text{d}}{\text{d}\rho}+\rho\right)e^{-\frac{\rho^2}{2}}\Big]}^{n~個}\\ &=\left.\color{darkgoldenrod}\left[e^{\frac{\rho^2}{2}}\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)e^{-\frac{\rho^2}{2}}\right]^n\right.=e^{\frac{\rho^2}{2}}\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)\Bigg\{e^{-\frac{\rho^2}{2}}\underbrace{\left[\small e^{\frac{\rho^2}{2}}\left(-\dfrac{\text{d}}{\text{d}\rho}+\rho\right)e^{-\frac{\rho^2}{2}}\right]^{n-1}}_{=\ H_{n-1}(\rho)}\Bigg\}\\ &=e^{\frac{\rho^2}{2}}\left\{-\frac{\text{d}}{\text{d}\rho}\left[e^{-\frac{\rho^2}{2}}H_{n-1}(\rho)\right]+\rho e^{-\frac{\rho^2}{2}}H_{n-1}(\rho)\right\}\\ &=\cancel{e^{\frac{\rho^2}{2}}}\rho\cancel{e^{-\frac{\rho^2}{2}}}H_{n-1}(\rho)-\cancel{e^{\frac{\rho^2}{2}}}\cancel{e^{-\frac{\rho^2}{2}}}\frac{\text{d}H_{n-1}(\rho)}{\text{d}\rho}+\cancel{e^{\frac{\rho^2}{2}}}\rho\cancel{e^{-\frac{\rho^2}{2}}}H_{n-1}(\rho)\\ &=2\rho H_{n-1}(\rho)-\dfrac{\text{d}H_{n-1}(\rho)}{\text{d}\rho}=\left.\color{red}e^{\rho^2}\right.\left[2\rho\left.\color{red}e^{-\rho^2}\right.H_{n-1}(\rho)-\left.\color{red}e^{-\rho^2}\right.\dfrac{\text{d}H_{n-1}(\rho)}{\text{d}\rho}\right]\\ &=e^{\rho^2}\left(-\frac{\text{d}}{\text{d}\rho}\right)\left[e^{-\rho^2}H_{n-1}(\rho)\right]=\color{darkgoldenrod}\left[e^{\rho^2}\left(-\frac{\text{d}}{\text{d}\rho}\right)e^{-\rho^2}\right]^n\\ &=\overbrace{\Big[e^{\rho^2}\left(-\tfrac{\text{d}}{\text{d}\rho}\right)\cancel{e^{-\rho^2}}\Big]\Big[\cancel{e^{\rho^2}}\cdots \cancel{e^{-\rho^2}}\Big]\Big[\cancel{e^{\rho^2}}\left(-\tfrac{\text{d}}{\text{d}\rho}\right)e^{-\rho^2}\Big]}^{n~個}=\left.\color{darkgoldenrod}e^{\rho^2}\left(-\frac{\text{d}}{\text{d}\rho}\right)^ne^{-\rho^2}\right.。\end{align}$$ ### 性質2:埃爾米特多項式的領導係數 我們也觀察到 $H_n(\rho)$ 是領導係數(leading coefficient)為 $2^n$ 的 $n$ 次多項式。 ### 性質4:埃爾米特多項式的正交歸一條件 ### 性質4:埃爾米特多項式的生成函數 埃爾米特多項式 $H_n(x)$ 的生成函數是 $e^{2xt-t^2}$ 因為 $$$$