--- title: "Lecture Note 02" author: "sin-iu ho" date: "5 March 2020" header-includes: output: pdf_document --- # Lecture Note 02 ###### tags: `Quantum Physics II` ###### date: `5 March 2020` --- ::: info # <DIV style="text-align:center;">Chapter 7<br>Time-independent Perturbation Theory <br> 不含時微擾理論 <small>(abbr. t-indpd. Ptb. Theo.)</small></br> </DIV> ::: indpd = potential $V$ is time-indpt. 1. no (energy) degenerate = Nondegenerate 2. degenerate --- ## §7.1: Nondegenerate Perturbation Theory <br>非簡併微擾理論 <small>(abbr. Non-degen. Ptb. Theo.)</small> </br> ### §7.1.1: General Formulation 一般表述 - Reference :book: - **[Textbook 7.1](https://hackmd.io/YHcbMfR9SVixY6-HFj-u6A) (editing)** - [Reference Note 01](https://hackmd.io/@ulynx/S1QuuM0V8) ~~~ 點擊Details以展開速記內容,詳細分析請課後筆記。 老師舉了許多例子。 ~~~ ::: spoiler $H = H^0 +\lambda H^1$ perform Taylor expan. in terms of $\lambda$ Remind: When $\lambda=0$, $\hat{H}^0\psi^0_n=E^0_n\psi^0_n$ where $\psi^0_n$'s form a complete set of (infinite number of) states with $\left<\psi^0_m|\psi^0_n\right>=\delta_{mn}$. $\hat{H}\psi_n=E_n\psi_{n}$ Now if $H = H^0 +\lambda H^1$, we can do Taylor expan. in terms of $\lambda$: $\psi_n = \psi_n^0+\lambda\psi_n^1 + \lambda^2\psi_n^2+\cdots$ ==We want to {"{find=$\psi_n^1=\d=f=、\sum_m\psi{(n)}_m\psi_n^0$ * $\dfrac{e^2}{4\pi\epsilon_0}\approx$ 1. E&M $\alpha = \dfrac{e^2}{4\pi\epsilon_0}\approx 137$ 2. weak interation [精細結構常數](https://zh.wikipedia.org/zh-tw/%E7%B2%BE%E7%BB%86%E7%BB%93%E6%9E%84%E5%B8%B8%E6%95%B0) 3. $alpha_w = \dfrac{}and \dfrac{g_w^2"}{\E^2/m w){{Nathoal cyphey-}} 4. strong ineterriom $\alpha<1$ Fuck that shit 2. Non-relavistic expansion e.g. Hydrogen atom $\hat{H}=\dfrac{\hat{p}^2}{2\mu}-\dfrac{\alpha}{r}$ $\mu$ is the reduced-mass $\dfrac{p^2}{Am}=\dfrac{\alpha}{r}$ 3. heavy-quark? $m_Q\to \infty$; $\dfrac{1}{m_Q}\to 0$ $\mu_p=\dfrac{e^2}{2m}gS$ proton spin up to spin down proton to charmed proton $b\bar{u} \leftrightarrow c\bar{u}$ related by symmetry $q\bar{q}$ meson ::: ### §7.1.2: First-Order Theory 一階理論 - Reference :book: - **[Textbook 7.1]() (editing)** - Wikipedia:[Perturbation theory (quantum mechanics)#First order corrections](https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)#First_order_corrections)