--- title: "Lecture Note 03" author: "sin-iu ho" date: "9 March 2020" header-includes: output: pdf_document --- # Lecture Note 03 ###### tags: `Quantum Physics II` ###### date: `9 March 2020` --- ## Additional Topics 1. [Feynman diagram講義](http://www.fisica.uniud.it/~cobal/Site/PIF_7_Feynman.pdf) 2. [natural unit](https://en.wikipedia.org/wiki/Natural_units): Let $\hbar=c=1$ 3. [21cm Line](https://en.wikipedia.org/wiki/Hydrogen_line) $\leftrightarrow$ 1/million precision 4. 把一個介子中的b夸克換成c夸克,外面的反u夸克不會感覺到 $\left<b|\hat{H'}|c\right>\propto\left<b|c\right>$ ## §7.1.2: First-Order Theory 一階理論 ([Review](https://hackmd.io/@ulynx/HJwNZ1ANU)) - Reference - **[Textbook §7.1](https://hackmd.io/@ulynx/rym_o5_8I) (editing)** - Wikipedia: [Perturbation theory (quantum mechanics)#First order corrections](https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)#First_order_corrections) - Comments - ==有關在課本6.13式後面加一項 $c\psi^0_n$ 以及產生之相 $e^{i\lambda\tilde{c}}$ 可以消掉的問題== - Conclusion - $\displaystyle \boxed{E^1_n=\left<\psi^0_n\middle|\hat{H'}\middle|\psi^0_n\right>}\tag{7.9}$ - $\displaystyle \boxed{\psi^1_n=\sum_{m\neq n}\dfrac{\left<\psi^0_m\middle|\hat{H'}\middle|\psi^0_n\right>}{E^0_n-E^0_m}\psi^0_m}\tag{7.13}$ ## §7.1.3: Second-Order Energies 二階能量 - Reference - **[Textbook §7.1](https://hackmd.io/@ulynx/rym_o5_8I) (editing)** - Wikipedia: [Perturbation theory (quantum mechanics)#Second-order and higher corrections](https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)#Second-order_and_higher_corrections) - 基礎量子力學(二)/姚珩 - 7-3. 無退化狀態二級能量的微擾修正・[Youtube](http://ocw.lib.ntnu.edu.tw/mod/resource/view.php?id=9513)・[講義](http://ocw.lib.ntnu.edu.tw/mod/resource/view.php?id=9514) - Conclusion $\displaystyle \boxed{E^2_n=\sum_{m\neq n}\dfrac{\left|\left<\psi^0_m\middle|\hat{H'}\middle|\psi^0_n\right>\right|^2}{E^0_n-E^0_m}}\tag{7.15}$ ## §7.2 Degenerate Perturbation Theory 簡併微擾理論 - Reference - **[Textbook §7.2](https://hackmd.io/nY58RMEyQceIaEoIe-_a_A?view#%C2%A7721-Two-fold-degenracy-%E4%BA%8C%E9%87%8D%E7%B0%A1%E4%BD%B5) (editing)** - 基礎量子力學(二)/姚珩 - 7-5. 有退化狀態能量與波函數的微擾修正・[Youtube](http://ocw.lib.ntnu.edu.tw/mod/resource/view.php?id=9620)・[講義](http://ocw.lib.ntnu.edu.tw/mod/resource/view.php?id=9621) - Idea 代表7.9與7.15式分母的兩個eigenvalue相等,相減為零 分母為零,分子也要為零才「比較合理」 也就是 $\left<\psi^0_m|\hat{H'}|\psi^0_n\right>$ 為零 ==用矩陣表示,這代表 $\left\{\left<\psi^0_m|\hat{H'}|\psi^0_n\right>\right\}$ 是一個反對角線為零的 $2\times 2$ 矩陣==?? ### §7.2.1 Two-fold degenracy 二重簡併 - Reference - **[Textbook §7.2](https://hackmd.io/nY58RMEyQceIaEoIe-_a_A?view#%C2%A7721-Two-fold-degenracy-%E4%BA%8C%E9%87%8D%E7%B0%A1%E4%BD%B5) (editing)** - Wikipedia: [Perturbation theory (quantum mechanics)#Effects of degeneracy](https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)#Effects_of_degeneracy) - Goal: 要找到一對簡併態 $\psi^0_a$ 和 $\psi^0_b$ 的兩個線性組合,也許是 $\beta\psi^0_a-\alpha\psi^0_b$ 和$\alpha\psi^0_a+\beta\psi^0_b$,使得這兩個線性組合前後夾住 $\hat{H'}$ 的矩陣表示是對角化。 #### Textbook Example 7.2 - Reference :book: - **[Textbook Example 7.2 - 7.3](https://hackmd.io/1wOFvGKyTiatvhUpAqCFoQ?both) ✅**</big> - [北京大學講義](http://www.phy.pku.edu.cn/~qhcao/resources/class/QMA15/note_pert.pdf),頁11-14 - [蘇黎世大學講義](https://www.uzh.ch/cmsssl/physik/dam/jcr:2b07e3c6-ea07-4791-bfaa-96e853d2555c/Results1.pdf),Exercise 3 ~~~ 點擊Details以展開速記內容,詳細分析請參閱課後筆記7.2.1。 ~~~ ::: spoiler 考慮一個二維量子諧振子 $\hat{H_0}=\dfrac{\hat{p}^2}{2m}+\dfrac{1}{2}m\omega^2(\hat{x}^2+\hat{y}^2)$ $\hat{H'}=\epsilon m\omega^2xy$ 有簡併態 $\psi_a^0=\psi_0(x)\psi_1(y)=\sqrt{\dfrac{2}{\pi}}\dfrac{m\omega}{\hbar}ye^{-\frac{m\omega}{2\hbar}(x^2+y^2)}$ 是Gassian $\psi_b^0=\psi_1(x)\psi_0(y)=\sqrt{\dfrac{2}{\pi}}\dfrac{m\omega}{\hbar}xe^{-\frac{m\omega}{2\hbar}(x^2+y^2)}$ 簡併的能量為 $E^0_a=E^0_b=\left(\dfrac{1}{2}+\dfrac{3}{2}\right)\hbar\omega=2\hbar\omega$。 選一組好用的{算符|} 令 $\hat{x'}=\dfrac{\hat{x}+\hat{y}}{\sqrt{2}}$、$\hat{y'}=\dfrac{\hat{x}-\hat{y}}{\sqrt{2}}$,使得 $\hat{H}=\dfrac{-\hbar^2}{2m}\left(\dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}\right)+\dfrac{1}{2}m(1+\epsilon)\omega^2\hat{x'}^2+\dfrac{1}{2}m(1-\epsilon)\omega^2\hat{y'}^2$, 且令$\omega^2_{+}\equiv(1+\epsilon)\omega^2$ 和 $\omega^2_{-}\equiv(1-\epsilon)\omega^2$, $\psi_{mn}=\psi^+_m(x')\psi^-_n(y')$ $E_{mn}=\left(m+\dfrac{1}{2}\right)\hbar\omega_{+}+\left(n+\dfrac{1}{2}\right)\hbar\omega_{-} = (m+n+1)\hbar\omega$ $\epsilon\to 0$ 時, $\displaystyle \lim_{\epsilon\to 0}\psi_{01}=\lim_{\epsilon\to 0}\psi_0^+(x')\psi_1^-(y')=\psi_0\left(\dfrac{x+y}{\sqrt{2}}\right)\psi_1^-\left(\dfrac{x-y}{\sqrt{2}}\right)=\sqrt{\dfrac{2}{\pi}}\dfrac{m\omega}{\hbar}\dfrac{x-y}{\sqrt{2}}e^{-\frac{m\omega}{\hbar}(x^2+y^2)}=\dfrac{-\psi_a^0+\psi_b^0}{\sqrt{2}}$ 同樣的, $\displaystyle \lim_{\epsilon\to 0}\psi_{10}=\dfrac{\psi_a^0+\psi_b^0}{\sqrt{2}}$ 找到兩個線性組合了 :::
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up